Skip to main content

EDTalk: Efficient Disentanglement for Emotional Talking Head Synthesis

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Achieving disentangled control over multiple facial motions and accommodating diverse input modalities greatly enhances the application and entertainment of the talking head generation. This necessitates a deep exploration of the decoupling space for facial features, ensuring that they a) operate independently without mutual interference and b) can be preserved to share with different modal inputs-both aspects often neglected in existing methods. To address this gap, this paper proposes a novel Efficient Disentanglement framework for Talking head generation (EDTalk). Our framework enables individual manipulation of mouth shape, head pose, and emotional expression, conditioned on video or audio inputs. Specifically, we employ three lightweight modules to decompose the facial dynamics into three distinct latent spaces representing mouth, pose, and expression, respectively. Each space is characterized by a set of learnable bases whose linear combinations define specific motions. To ensure independence and accelerate training, we enforce orthogonality among bases and devise an efficient training strategy to allocate motion responsibilities to each space without relying on external knowledge. The learned bases are then stored in corresponding banks, enabling shared visual priors with audio input. Furthermore, considering the properties of each space, we propose an Audio-to-Motion module for audio-driven talking head synthesis. Experiments are conducted to demonstrate the effectiveness of EDTalk. The code and pretrained models are released at: https://tanshuai0219.github.io/EDTalk/

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afouras, T., Chung, J.S., Senior, A., Vinyals, O., Zisserman, A.: Deep audio-visual speech recognition. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 8717–8727 (2018)

    Article  Google Scholar 

  2. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194 (1999)

    Google Scholar 

  3. Bregler, C., Covell, M., Slaney, M.: Video rewrite: driving visual speech with audio. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 715–722 (2023)

    Google Scholar 

  4. Chen, L., et al.: Talking-head generation with rhythmic head motion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 35–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_3

    Chapter  Google Scholar 

  5. Chen, L., Li, Z., Maddox, R.K., Duan, Z., Xu, C.: Lip movements generation at a glance. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 520–535 (2018)

    Google Scholar 

  6. Chen, L., Maddox, R.K., Duan, Z., Xu, C.: Hierarchical cross-modal talking face generation with dynamic pixel-wise loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7832–7841 (2019)

    Google Scholar 

  7. Chen, L., et al.: Vast: vivify your talking avatar via zero-shot expressive facial style transfer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2977–2987 (2023)

    Google Scholar 

  8. Chung, J.S., Nagrani, A., Zisserman, A.: Voxceleb2: deep speaker recognition. arXiv preprint arXiv:1806.05622 (2018)

  9. Chung, J.S., Zisserman, A.: Lip reading in the wild. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10112, pp. 87–103. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54184-6_6

    Chapter  Google Scholar 

  10. Chung, J.S., Zisserman, A.: Out of time: automated lip sync in the wild. In: Chen, C.-S., Lu, J., Ma, K.-K. (eds.) ACCV 2016. LNCS, vol. 10117, pp. 251–263. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54427-4_19

    Chapter  Google Scholar 

  11. Daněček, R., Black, M.J., Bolkart, T.: Emoca: emotion driven monocular face capture and animation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20311–20322 (2022)

    Google Scholar 

  12. Das, D., Biswas, S., Sinha, S., Bhowmick, B.: Speech-driven facial animation using cascaded GANs for learning of motion and texture. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 408–424. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_25

    Chapter  Google Scholar 

  13. Ekman, P., Friesen, W.V.: Facial action coding system. Environ. Psychol. Nonverbal Behav. (1978)

    Google Scholar 

  14. Gan, Y., Yang, Z., Yue, X., Sun, L., Yang, Y.: Efficient emotional adaptation for audio-driven talking-head generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22634–22645 (2023)

    Google Scholar 

  15. Goyal, S., et al.: Emotionally enhanced talking face generation. In: Proceedings of the 1st International Workshop on Multimedia Content Generation and Evaluation: New Methods and Practice, pp. 81–90 (2023)

    Google Scholar 

  16. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  17. Hong, F.T., Zhang, L., Shen, L., Xu, D.: Depth-aware generative adversarial network for talking head video generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3397–3406 (2022)

    Google Scholar 

  18. Hsu, W.N., Bolte, B., Tsai, Y.H.H., Lakhotia, K., Salakhutdinov, R., Mohamed, A.: Hubert: Self-supervised speech representation learning by masked prediction of hidden units. IEEE/ACM Trans. Audio Speech Lang. Process. 29, 3451–3460 (2021)

    Article  Google Scholar 

  19. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  20. Ji, X., et al.: Eamm: one-shot emotional talking face via audio-based emotion-aware motion model. In: ACM SIGGRAPH 2022 Conference Proceedings, pp. 1–10 (2022)

    Google Scholar 

  21. Ji, X., Zhou, H., Wang, K., Wu, W., Loy, C.C., Cao, X., Xu, F.: Audio-driven emotional video portraits. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14080–14089 (2021)

    Google Scholar 

  22. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  23. Khakhulin, T., Sklyarova, V., Lempitsky, V., Zakharov, E.: Realistic one-shot mesh-based head avatars. In: European Conference on Computer Vision, pp. 345–362. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-20086-1_20

  24. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  25. Kim, T., Vossen, P.: Emoberta: speaker-aware emotion recognition in conversation with roberta. arXiv preprint arXiv:2108.12009 (2021)

  26. Li, D., et al.: Ae-nerf: audio enhanced neural radiance field for few shot talking head synthesis. arXiv preprint arXiv:2312.10921 (2023)

  27. Liang, B., et al.: Expressive talking head generation with granular audio-visual control. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3387–3396 (2022)

    Google Scholar 

  28. Liu, T., et al.: Anitalker: animate vivid and diverse talking faces through identity-decoupled facial motion encoding. arXiv preprint arXiv:2405.03121 (2024)

  29. Liu, X., Xu, Y., Wu, Q., Zhou, H., Wu, W., Zhou, B.: Semantic-aware implicit neural audio-driven video portrait generation. In: European Conference on Computer Vision, pp. 106–125. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19836-6_7

  30. Ma, Y., et al.: Talkclip: talking head generation with text-guided expressive speaking styles. arXiv preprint arXiv:2304.00334 (2023)

  31. Ma, Y., et al.: Styletalk: one-shot talking head generation with controllable speaking styles. arXiv preprint arXiv:2301.01081 (2023)

  32. Meng, D., Peng, X., Wang, K., Qiao, Y.: Frame attention networks for facial expression recognition in videos. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 3866–3870. IEEE (2019)

    Google Scholar 

  33. Pang, Y., et al.: DPE: disentanglement of pose and expression for general video portrait editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2023)

    Google Scholar 

  34. Park, S.J., Kim, M., Hong, J., Choi, J., Ro, Y.M.: Synctalkface: talking face generation with precise lip-syncing via audio-lip memory. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2062–2070 (2022)

    Google Scholar 

  35. Pataranutaporn, P., et al.: Ai-generated characters for supporting personalized learning and well-being. Nat. Mach. Intell. 3(12), 1013–1022 (2021)

    Article  Google Scholar 

  36. Prajwal, K., Mukhopadhyay, R., Namboodiri, V.P., Jawahar, C.: A lip sync expert is all you need for speech to lip generation in the wild. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 484–492 (2020)

    Google Scholar 

  37. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International Conference on Machine Learning, pp. 1530–1538. PMLR (2015)

    Google Scholar 

  38. Seitzer, M.: pytorch-fid: FID Score for PyTorch (2020). https://github.com/mseitzer/pytorch-fid. version 0.3.0

  39. Shen, S., Li, W., Zhu, Z., Duan, Y., Zhou, J., Lu, J.: Learning dynamic facial radiance fields for few-shot talking head synthesis. In: European Conference on Computer Vision, pp. 666–682. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19775-8_39

  40. Shen, S., et al.: Difftalk: crafting diffusion models for generalized audio-driven portraits animation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1982–1991 (2023)

    Google Scholar 

  41. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  43. Sinha, S., Biswas, S., Yadav, R., Bhowmick, B.: Emotion-controllable generalized talking face generation. In: International Joint Conference on Artificial Intelligence. IJCAI (2021)

    Google Scholar 

  44. Song, Y., Zhu, J., Li, D., Wang, A., Qi, H.: Talking face generation by conditional recurrent adversarial network. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (2019). https://doi.org/10.24963/ijcai.2019/129

  45. Tan, S., Ji, B., Pan, Y.: Emmn: emotional motion memory network for audio-driven emotional talking face generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22146–22156 (2023)

    Google Scholar 

  46. Thies, J., Elgharib, M., Tewari, A., Theobalt, C., Nießner, M.: Neural voice puppetry: audio-driven facial reenactment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 716–731. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_42

    Chapter  Google Scholar 

  47. Wang, D., Deng, Y., Yin, Z., Shum, H.Y., Wang, B.: Progressive disentangled representation learning for fine-grained controllable talking head synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17979–17989 (2023)

    Google Scholar 

  48. Wang, J., Qian, X., Zhang, M., Tan, R.T., Li, H.: Seeing what you said: talking face generation guided by a lip reading expert. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14653–14662 (2023)

    Google Scholar 

  49. Wang, J., et al.: Lipformer: high-fidelity and generalizable talking face generation with a pre-learned facial codebook. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13844–13853 (2023)

    Google Scholar 

  50. Wang, K., et al.: MEAD: a large-scale audio-visual dataset for emotional talking-face generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 700–717. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_42

    Chapter  Google Scholar 

  51. Wang, S., Li, L., Ding, Y., Fan, C., Yu, X.: Audio2head: audio-driven one-shot talking-head generation with natural head motion. In: International Joint Conference on Artificial Intelligence. IJCAI (2021)

    Google Scholar 

  52. Wang, S., Li, L., Ding, Y., Yu, X.: One-shot talking face generation from single-speaker audio-visual correlation learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2531–2539 (2022)

    Google Scholar 

  53. Wang, Y., Yang, D., Bremond, F., Dantcheva, A.: Latent image animator: learning to animate images via latent space navigation. In: International Conference on Learning Representations (2021)

    Google Scholar 

  54. Wang, Y., Boumadane, A., Heba, A.: A fine-tuned wav2vec 2.0/hubert benchmark for speech emotion recognition, speaker verification and spoken language understanding. arXiv preprint arXiv:2111.02735 (2021)

  55. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  56. Yang, K., Chen, K., Guo, D., Zhang, S.H., Guo, Y.C., Zhang, W.: Face2face \(\rho \): Real-time high-resolution one-shot face reenactment. In: European Conference on Computer Vision, pp. 55–71. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19778-9_4

  57. Yin, F., et al.: Styleheat: One-shot high-resolution editable talking face generation via pre-trained stylegan. In: European Conference on Computer Vision, pp. 85–101. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19790-1_6

  58. Yu, Z., Yin, Z., Zhou, D., Wang, D., Wong, F., Wang, B.: Talking head generation with probabilistic audio-to-visual diffusion priors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7645–7655 (2023)

    Google Scholar 

  59. Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9459–9468 (2019)

    Google Scholar 

  60. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  61. Zhang, W., et al.: Sadtalker: learning realistic 3d motion coefficients for stylized audio-driven single image talking face animation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8652–8661 (2023)

    Google Scholar 

  62. Zhang, Z., Li, L., Ding, Y., Fan, C.: Flow-guided one-shot talking face generation with a high-resolution audio-visual dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3661–3670 (2021)

    Google Scholar 

  63. Zhong, W., et al.: Identity-preserving talking face generation with landmark and appearance priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2023)

    Google Scholar 

  64. Zhou, H., Liu, Y., Liu, Z., Luo, P., Wang, X.: Talking face generation by adversarially disentangled audio-visual representation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9299–9306 (2019)

    Google Scholar 

  65. Zhou, H., Sun, Y., Wu, W., Loy, C.C., Wang, X., Liu, Z.: Pose-controllable talking face generation by implicitly modularized audio-visual representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4176–4186 (2021)

    Google Scholar 

  66. Zhou, Y., Han, X., Shechtman, E., Echevarria, J., Kalogerakis, E., Li, D.: Makelttalk: speaker-aware talking-head animation. ACM Trans. Graph. (TOG) 39(6), 1–15 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC, NO. 62102255), NetEase Fuxi Lab Industry-University Collaboration Research Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Pan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6727 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, S., Ji, B., Bi, M., Pan, Y. (2025). EDTalk: Efficient Disentanglement for Emotional Talking Head Synthesis. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15064. Springer, Cham. https://doi.org/10.1007/978-3-031-72658-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72658-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72657-6

  • Online ISBN: 978-3-031-72658-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics