Abstract
Event stereo matching is an emerging technique to estimate depth from neuromorphic cameras; however, events are unlikely to trigger in the absence of motion or the presence of large, untextured regions, making the correspondence problem extremely challenging. Purposely, we propose integrating a stereo event camera with a fixed-frequency active sensor – e.g., a LiDAR – collecting sparse depth measurements, overcoming the aforementioned limitations. Such depth hints are used by hallucinating – i.e., inserting fictitious events – the stacks or raw input streams, compensating for the lack of information in the absence of brightness changes. Our techniques are general, can be adapted to any structured representation to stack events and outperform state-of-the-art fusion methods applied to event-based stereo.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andreopoulos, A., Kashyap, H.J., Nayak, T.K., Amir, A., Flickner, M.D.: A low power, high throughput, fully event-based stereo system. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7532–7542 (2018)
Badino, H., Huber, D.F., Kanade, T.: Integrating lidar into stereo for fast and improved disparity computation. In: 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 405–412 (2011)
Baldwin, R.W., Liu, R., Almatrafi, M., Asari, V., Hirakawa, K.: Time-ordered recent event (tore) volumes for event cameras. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 2519–2532 (2022)
Bartolomei, L., Poggi, M., Tosi, F., Conti, A., Mattoccia, S.: Active stereo without pattern projector. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 18470–18482 (October 2023)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)
Brebion, V., Moreau, J., Davoine, F.: Learning to estimate two dense depths from lidar and event data. In: Scandinavian Conference on Image Analysis. pp. 517–533. Springer (2023). https://doi.org/10.1007/978-3-031-31438-4_34
Camuñas-Mesa, L.A., Serrano-Gotarredona, T., Ieng, S.H., Benosman, R.B., Linares-Barranco, B.: On the use of orientation filters for 3d reconstruction in event-driven stereo vision. Front. Neurosci. 8, 48 (2014)
Carneiro, J., Ieng, S.H., Posch, C., Benosman, R.: Event-based 3d reconstruction from neuromorphic retinas. Neural Netw. 45, 27–38 (2013)
Chaney, K., et al.: M3ed: Multi-robot, multi-sensor, multi-environment event dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 4015–4022 (June 2023)
Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5410–5418 (2018)
Cheng, X., Wang, P., Yang, R.: Learning depth with convolutional spatial propagation network. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2361–2379 (2019)
Cheng, X., Zhong, Y., Dai, Y., Ji, P., Li, H.: Noise-aware unsupervised deep lidar-stereo fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6339–6348 (2019)
Cheng, X., et al.: Hierarchical neural architecture search for deep stereo matching. Adv. Neural Inform. Process. Syst. 33 (2020)
Cui, M., Zhu, Y., Liu, Y., Liu, Y., Chen, G., Huang, K.: Dense depth-map estimation based on fusion of event camera and sparse lidar. IEEE Trans. Instrum. Meas. 71, 1–11 (2022). https://doi.org/10.1109/TIM.2022.3144229
Dikov, G., Firouzi, M., Röhrbein, F., Conradt, J., Richter, C.: Spiking cooperative stereo-matching at 2 ms latency with neuromorphic hardware. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P.F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 119–137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_11
Duggal, S., Wang, S., Ma, W.C., Hu, R., Urtasun, R.: Deeppruner: learning efficient stereo matching via differentiable patchmatch. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4384–4393 (2019)
Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 154–180 (2020)
Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 154–180 (2022). https://doi.org/10.1109/TPAMI.2020.3008413
Gandhi, V., Čech, J., Horaud, R.: High-resolution depth maps based on tof-stereo fusion. In: 2012 IEEE International Conference on Robotics and Automation, pp. 4742–4749. IEEE (2012)
Gao, L., et al.: Vector: a versatile event-centric benchmark for multi-sensor slam. IEEE Robot. Autom. Lett. 7(3), 8217–8224 (2022)
Gehrig, M., Aarents, W., Gehrig, D., Scaramuzza, D.: Dsec: a stereo event camera dataset for driving scenarios. IEEE Robot. Autom. Lett. (2021). https://doi.org/10.1109/LRA.2021.3068942
Guo, W., et al.: Context-enhanced stereo transformer. In: Proceedings of the European Conference on Computer Vision (ECCV) (2022)
Guo, X., Yang, K., Yang, W., Wang, X., Li, H.: Group-wise correlation stereo network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3273–3282 (2019)
Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2007)
Huang, Y.K., et al.: S3: learnable sparse signal superdensity for guided depth estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16706–16716 (2021)
Huang, Z., Sun, L., Zhao, C., Li, S., Su, S.: Eventpoint: self-supervised interest point detection and description for event-based camera. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 5396–5405 (January 2023)
Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: The IEEE International Conference on Computer Vision (ICCV) (Oct 2017)
Khamis, S., Fanello, S., Rhemann, C., Kowdle, A., Valentin, J., Izadi, S.: Stereonet: guided hierarchical refinement for real-time edge-aware depth prediction. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 573–590 (2018)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kogler, J., Sulzbachner, C., Humenberger, M., Eibensteiner, F.: Address-event based stereo vision with bio-inspired silicon retina imagers. Advances in theory and applications of stereo vision, pp. 165–188 (2011)
Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)
Lagorce, X., Orchard, G., Galluppi, F., Shi, B.E., Benosman, R.B.: Hots: a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1346–1359 (2016)
Li, B., et al.: Enhancing 3-d lidar point clouds with event-based camera. IEEE Trans. Instrum. Meas. 70, 1–12 (2021)
Li, J., et al.: Practical stereo matching via cascaded recurrent network with adaptive correlation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16263–16272 (2022)
Li, Z., et al.: Revisiting stereo depth estimation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6197–6206 (2021)
Liang, C.K., Cheng, C.C., Lai, Y.C., Chen, L.G., Chen, H.H.: Hardware-efficient belief propagation. IEEE Trans. Circuits Syst. Video Technol. 21(5), 525–537 (2011)
Liang, Z., et al.: Learning for disparity estimation through feature constancy. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018)
Lipson, L., Teed, Z., Deng, J.: Raft-stereo: multilevel recurrent field transforms for stereo matching. In: International Conference on 3D Vision (3DV) (2021)
Maqueda, A.I., Loquercio, A., Gallego, G., García, N., Scaramuzza, D.: Event-based vision meets deep learning on steering prediction for self-driving cars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5419–5427 (2018)
Marin, G., Zanuttigh, P., Mattoccia, S.: Reliable fusion of ToF and stereo depth driven by confidence measures. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 386–401. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_24
Marr, D.C., Poggio, T.A.: Cooperative computation of stereo disparity. Science 194(4262), 283–7 (1976)
Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2016)
Nam, Y., Mostafavi, M., Yoon, K.J., Choi, J.: Stereo depth from events cameras: Concentrate and focus on the future. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6114–6123 (2022)
Osswald, M., Ieng, S.H., Benosman, R., Indiveri, G.: A spiking neural network model of 3d perception for event-based neuromorphic stereo vision systems. Sci. Rep. 7(1), 40703 (2017)
Pang, J., Sun, W., Ren, J.S., Yang, C., Yan, Q.: Cascade residual learning: A two-stage convolutional neural network for stereo matching. In: The IEEE International Conference on Computer Vision (ICCV) (Oct 2017)
Park, K., Kim, S., Sohn, K.: High-precision depth estimation with the 3d lidar and stereo fusion. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2156–2163. IEEE (2018)
Piatkowska, E., Belbachir, A., Gelautz, M.: Asynchronous stereo vision for event-driven dynamic stereo sensor using an adaptive cooperative approach. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 45–50 (2013)
Poggi, M., Agresti, G., Tosi, F., Zanuttigh, P., Mattoccia, S.: Confidence estimation for tof and stereo sensors and its application to depth data fusion. IEEE Sens. J. 20(3), 1411–1421 (2020). https://doi.org/10.1109/JSEN.2019.2946591
Poggi, M., Pallotti, D., Tosi, F., Mattoccia, S.: Guided stereo matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 979–988 (2019)
Poggi, M., Tosi, F.: Federated online adaptation for deep stereo. In: CVPR (2024)
Poggi, M., Tosi, F., Batsos, K., Mordohai, P., Mattoccia, S.: On the synergies between machine learning and binocular stereo for depth estimation from images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5314–5334 (2022)
Rogister, P., Benosman, R., Ieng, S.H., Lichtsteiner, P., Delbruck, T.: Asynchronous event-based binocular stereo matching. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 347–353 (2011)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Saikia, T., Marrakchi, Y., Zela, A., Hutter, F., Brox, T.: Autodispnet: improving disparity estimation with automl. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1812–1823 (2019)
Saucedo, M.A., et al.: Event camera and lidar based human tracking for adverse lighting conditions in subterranean environments. IFAC-PapersOnLine 56(2), 9257–9262 (2023)
Schraml, S., Belbachir, A.N., Milosevic, N., Schön, P.: Dynamic stereo vision system for real-time tracking. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 1409–1412. IEEE (2010)
Shen, Z., Dai, Y., Rao, Z.: Cfnet: Cascade and fused cost volume for robust stereo matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 13906–13915 (June 2021)
Song, R., Jiang, Z., Li, Y., Shan, Y., Huang, K.: Calibration of event-based camera and 3d lidar. In: 2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA), pp. 289–295. IEEE (2018)
Song, X., Zhao, X., Hu, H., Fang, L.: Edgestereo: a context integrated residual pyramid network for stereo matching. In: ACCV (2018)
Sulzbachner, C., Zinner, C., Kogler, J.: An optimized silicon retina stereo matching algorithm using time-space correlation. In: CVPR 2011 WORKSHOPS, pp. 1–7. IEEE (2011)
Ta, K., Bruggemann, D., Brödermann, T., Sakaridis, C., Van Gool, L.: L2e: lasers to events for 6-dof extrinsic calibration of lidars and event cameras. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 11425–11431. IEEE (2023)
Taniai, T., Matsushita, Y., Naemura, T.: Graph cut based continuous stereo matching using locally shared labels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1613–1620 (2014)
Tankovich, V., Hane, C., Zhang, Y., Kowdle, A., Fanello, S., Bouaziz, S.: Hitnet: hierarchical iterative tile refinement network for real-time stereo matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14362–14372 (June 2021)
Tonioni, A., Tosi, F., Poggi, M., Mattoccia, S., Stefano, L.D.: Real-time self-adaptive deep stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)
Tosi, F., Tonioni, A., De Gregorio, D., Poggi, M.: Nerf-supervised deep stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 855–866 (June 2023)
Tulyakov, S., Fleuret, F., Kiefel, M., Gehler, P., Hirsch, M.: Learning an event sequence embedding for dense event-based deep stereo. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1527–1537 (2019)
Uddin, S.N., Ahmed, S.H., Jung, Y.J.: Unsupervised deep event stereo for depth estimation. IEEE Trans. Circuits Syst. Video Technol. 32(11), 7489–7504 (2022)
Veksler, O.: Stereo correspondence by dynamic programming on a tree. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 384–390. IEEE (2005)
Wang, T.H., Hu, H.N., Lin, C.H., Tsai, Y.H., Chiu, W.C., Sun, M.: 3d lidar and stereo fusion using stereo matching network with conditional cost volume normalization. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5895–5902. IEEE (2019)
Wang, Y., et al.: Anytime stereo image depth estimation on mobile devices. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 5893–5900 (2019)
Xu, G., Wang, X., Ding, X., Yang, X.: Iterative geometry encoding volume for stereo matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21919–21928 (2023)
Xu, H., Zhang, J.: Aanet: adaptive aggregation network for efficient stereo matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1959–1968 (2020)
Yang, G., Manela, J., Happold, M., Ramanan, D.: Hierarchical deep stereo matching on high-resolution images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5515–5524 (2019)
Yang, G., Zhao, H., Shi, J., Deng, Z., Jia, J.: SegStereo: exploiting semantic information for disparity estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 660–676. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_39
Yang, Q., Wang, L., Ahuja, N.: A constant-space belief propagation algorithm for stereo matching. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1458–1465. IEEE (2010)
Yang, Q., Wang, L., Yang, R., Stewénius, H., Nistér, D.: Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 492–504 (2008)
Yin, Z., Darrell, T., Yu, F.: Hierarchical discrete distribution decomposition for match density estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6044–6053 (2019)
Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Third European Conference on Computer Vision (Vol. II). pp. 151–158. 3rd European Conference on Computer Vision (ECCV), Springer-Verlag New York, Inc., Secaucus, NJ, USA (1994)
Zbontar, J., LeCun, Y., et al.: Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res. 17(1), 2287–2318 (2016)
Zhang, F., Prisacariu, V., Yang, R., Torr, P.H.: GA-Net: guided aggregation net for end-to-end stereo matching. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Zhang, J., Ramanagopal, M.S., Vasudevan, R., Johnson-Roberson, M.: Listereo: generate dense depth maps from lidar and stereo imagery. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 7829–7836. IEEE (2020)
Zhang, Y., Zou, S., Liu, X., Huang, X., Wan, Y., Yao, Y.: Lidar-guided stereo matching with a spatial consistency constraint. ISPRS J. Photogramm. Remote. Sens. 183, 164–177 (2022)
Zhao, H., Zhou, H., Zhang, Y., Chen, J., Yang, Y., Zhao, Y.: High-frequency stereo matching network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1327–1336 (2023)
Zhao, H., Zhou, H., Zhang, Y., Zhao, Y., Yang, Y., Ouyang, T.: Eai-stereo: error aware iterative network for stereo matching. In: Proceedings of the Asian Conference on Computer Vision, pp. 315–332 (2022)
Zhou, Y., Gallego, G., Rebecq, H., Kneip, L., Li, H., Scaramuzza, D.: Semi-dense 3D reconstruction with a stereo event camera. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 242–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_15
Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised event-based learning of optical flow, depth, and egomotion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 989–997 (2019)
Zubić, N., Gehrig, D., Gehrig, M., Scaramuzza, D.: From chaos comes order: Ordering event representations for object recognition and detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12846–12856 (October 2023)
Acknowledgement
This study was carried out within the MOST - Sustainable Mobility National Research Center and received funding from the European Union Next-GenerationEU - PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) - MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 - D.D. 1033 17/06/2022, CN00000023. This manuscript reflects only the authors’ views and opinions, neither the European Union nor the European Commission can be considered responsible for them.
We acknowledge the CINECA award under the ISCRA initiative, for the availability of high-performance computing resources and support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bartolomei, L., Poggi, M., Conti, A., Mattoccia, S. (2025). LiDAR-Event Stereo Fusion with Hallucinations. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15064. Springer, Cham. https://doi.org/10.1007/978-3-031-72658-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-72658-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72657-6
Online ISBN: 978-3-031-72658-3
eBook Packages: Computer ScienceComputer Science (R0)