Skip to main content

Blind Image Deblurring with Noise-Robust Kernel Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Blind deblurring is an ill-posed inverse problem involving the retrieval of a clear image and blur kernel from a single blurry image. The challenge arises considerably when strong noise, where its level remains unknown, is introduced. Existing blind deblurring methods are highly susceptible to noise due to overfitting and disturbances in the solution space. Here, we propose a blind deblurring method based on a noise-robust kernel estimation function and deep image prior (DIP). Specifically, the proposed kernel estimation function effectively estimates the blur kernel even for strongly noisy blurry images given a clear image and optimal condition. Therefore, DIP is adopted for the generation of a clear image to leverage its natural image prior. Additionally, the multiple kernel estimation scheme is designed to address a wide range of unknown noise levels. Extensive experimental studies, including simulated images and real-world examples, demonstrate the superior deblurring performance of the proposed method. The official code is uploaded in https://github.com/csleemooo/BD_noise_robust_kernel_estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjomand Bigdeli, S., Zwicker, M., Favaro, P., Jin, M.: Deep mean-shift priors for image restoration. Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  2. Binding, J., Mikula, S., Denk, W.: Low-dosage maximum-a-posteriori focusing and stigmation. Microsc. Microanal. 19(1), 38–55 (2013)

    Article  Google Scholar 

  3. Bredell, G., Erdil, E., Weber, B., Konukoglu, E.: Wiener guided dip for unsupervised blind image deconvolution. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3047–3056 (2023)

    Google Scholar 

  4. Chen, L., Fang, F., Lei, S., Li, F., Zhang, G.: Enhanced sparse model for blind deblurring. In: European Conference on Computer Vision, pp. 631–646. Springer (2020)

    Google Scholar 

  5. Cho, S., Lee, S.: Fast motion deblurring. In: ACM SIGGRAPH Asia 2009 papers, pp. 1–8 (2009)

    Google Scholar 

  6. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: Diverse image synthesis for multiple domains. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  7. Chung, H., Kim, J., Kim, S., Ye, J.C.: Parallel diffusion models of operator and image for blind inverse problems. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6059–6069 (2023)

    Google Scholar 

  8. Dhawan, A.P., Rangayyan, R.M., Gordon, R.: Image restoration by wiener deconvolution in limited-view computed tomography. Appl. Opt. 24(23), 4013–4020 (1985)

    Article  Google Scholar 

  9. Dong, J., Pan, J., Sun, D., Su, Z., Yang, M.H.: Learning data terms for non-blind deblurring. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 748–763 (2018)

    Google Scholar 

  10. Dong, J., Roth, S., Schiele, B.: Deep wiener deconvolution: wiener meets deep learning for image deblurring. Adv. Neural. Inf. Process. Syst. 33, 1048–1059 (2020)

    Google Scholar 

  11. Gandelsman, Y., Shocher, A., Irani, M.: “double-dip”: unsupervised image decomposition via coupled deep-image-priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11026–11035 (2019)

    Google Scholar 

  12. Gonzalez, R.C.: Digital image processing. Pearson education india (2009)

    Google Scholar 

  13. Helmchen, F., Denk, W.: Deep tissue two-photon microscopy. Nat. Methods 2(12), 932–940 (2005)

    Article  Google Scholar 

  14. Jin, M., Roth, S., Favaro, P.: Noise-blind image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3510–3518 (2017)

    Google Scholar 

  15. Jin, M., Roth, S., Favaro, P.: Normalized blind deconvolution. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 668–684 (2018)

    Google Scholar 

  16. Joshi, N., Szeliski, R., Kriegman, D.J.: Psf estimation using sharp edge prediction. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–8. IEEE (2008)

    Google Scholar 

  17. Kawasaki, T., Nakano, T., Hirose, K.: Developing an aberration-corrected schottky emission sem and method for measuring aberration. Microelectron. Eng. 86(4–6), 1017–1020 (2009)

    Article  Google Scholar 

  18. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR 2011, pp. 233–240. IEEE (2011)

    Google Scholar 

  19. Kruse, J., Rother, C., Schmidt, U.: Learning to push the limits of efficient fft-based image deconvolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4586–4594 (2017)

    Google Scholar 

  20. Kubo, R., Toda, M., Hashitsume, N.: Statistical physics II: nonequilibrium statistical mechanics, vol. 31. Springer Science & Business Media (2012)

    Google Scholar 

  21. Lampard, D.: Generalization of the wiener-khintchine theorem to nonstationary processes. J. Appl. Phys. 25(6), 802–803 (1954)

    Article  MathSciNet  Google Scholar 

  22. Lee, W., Nam, H.S., Kim, Y.G., Kim, Y.J., Lee, J.H., Yoo, H.: Robust autofocusing for scanning electron microscopy based on a dual deep learning network. Sci. Rep. 11(1), 20933 (2021)

    Article  Google Scholar 

  23. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964–1971. IEEE (2009)

    Google Scholar 

  24. Li, J., Luisier, F., Blu, T.: Pure-let image deconvolution. IEEE Trans. Image Process. 27(1), 92–105 (2017)

    Article  MathSciNet  Google Scholar 

  25. Lifshin, E., Kandel, Y.P., Moore, R.L.: Improving scanning electron microscope resolution for near planar samples through the use of image restoration. Microsc. Microanal. 20(1), 78–89 (2014)

    Article  Google Scholar 

  26. Lu, Y., Zhang, X., Li, H.: A simplified focusing and astigmatism correction method for a scanning electron microscope. AIP Advances 8(1) (2018)

    Google Scholar 

  27. Na, J., Kim, G., Kang, S.H., Kim, S.J., Lee, S.: Deep learning-based discriminative refocusing of scanning electron microscopy images for materials science. Acta Mater. 214, 116987 (2021)

    Article  Google Scholar 

  28. Nan, Y., Quan, Y., Ji, H.: Variational-em-based deep learning for noise-blind image deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3626–3635 (2020)

    Google Scholar 

  29. Pan, J., Hu, Z., Su, Z., Yang, M.H.: Deblurring text images via l0-regularized intensity and gradient prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2901–2908 (2014)

    Google Scholar 

  30. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1628–1636 (2016)

    Google Scholar 

  31. Perrone, D., Favaro, P.: Total variation blind deconvolution: the devil is in the details. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2909–2916 (2014)

    Google Scholar 

  32. Reimer, L.: Scanning electron microscopy: physics of image formation and microanalysis. Meas. Sci. Technol. 11(12), 1826–1826 (2000)

    Article  Google Scholar 

  33. Ren, D., Zhang, K., Wang, Q., Hu, Q., Zuo, W.: Neural blind deconvolution using deep priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3341–3350 (2020)

    Google Scholar 

  34. Roels, J., Aelterman, J., De Vylder, J., Luong, H., Saeys, Y., Philips, W.: Bayesian deconvolution of scanning electron microscopy images using point-spread function estimation and non-local regularization. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 443–447. IEEE (2016)

    Google Scholar 

  35. Sanghvi, Y., Mao, Z., Chan, S.H.: Structured kernel estimation for photon-limited deconvolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9863–9872 (2023)

    Google Scholar 

  36. Schubert, P.J., Saxena, R., Kornfeld, J.: Deepfocus: Fast focus and astigmatism correction for electron microscopy. arXiv preprint arXiv:2305.04977 (2023)

  37. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. (tog) 27(3), 1–10 (2008)

    Article  Google Scholar 

  38. Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur kernel estimation using patch priors. In: IEEE International Conference on Computational Photography (ICCP), pp. 1–8. IEEE (2013)

    Google Scholar 

  39. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)

    Google Scholar 

  40. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part I 11, pp. 157–170. Springer (2010)

    Google Scholar 

  41. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1114 (2013)

    Google Scholar 

  42. Xue, F., Luisier, F., Blu, T.: Multi-wiener sure-let deconvolution. IEEE Trans. Image Process. 22(5), 1954–1968 (2013)

    Article  MathSciNet  Google Scholar 

  43. Zotta, M.D., Nevins, M.C., Hailstone, R.K., Lifshin, E.: The determination and application of the point spread function in the scanning electron microscope. Microsc. Microanal. 24(4), 396–405 (2018)

    Article  Google Scholar 

  44. Zuo, W., Ren, D., Zhang, D., Gu, S., Zhang, L.: Learning iteration-wise generalized shrinkage-thresholding operators for blind deconvolution. IEEE Trans. Image Process. 25(4), 1751–1764 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Samsung Research Funding and Incubation Center of Samsung Electronics grant SRFC-IT2002-03, Samsung Electronics Co., Ltd. (IO220908-02403-01), and the National Research Foundation of Korea grant funded by the Korean government (Grant Nos. NRF-2021R1A5A1032937, NRF-2021R1C1C1011307, RS-2023-00251628, and RS-2024-00397673).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chanseok Lee or Mooseok Jang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 34279 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, C. et al. (2025). Blind Image Deblurring with Noise-Robust Kernel Estimation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15078. Springer, Cham. https://doi.org/10.1007/978-3-031-72661-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72661-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72660-6

  • Online ISBN: 978-3-031-72661-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics