Abstract
Blind deblurring is an ill-posed inverse problem involving the retrieval of a clear image and blur kernel from a single blurry image. The challenge arises considerably when strong noise, where its level remains unknown, is introduced. Existing blind deblurring methods are highly susceptible to noise due to overfitting and disturbances in the solution space. Here, we propose a blind deblurring method based on a noise-robust kernel estimation function and deep image prior (DIP). Specifically, the proposed kernel estimation function effectively estimates the blur kernel even for strongly noisy blurry images given a clear image and optimal condition. Therefore, DIP is adopted for the generation of a clear image to leverage its natural image prior. Additionally, the multiple kernel estimation scheme is designed to address a wide range of unknown noise levels. Extensive experimental studies, including simulated images and real-world examples, demonstrate the superior deblurring performance of the proposed method. The official code is uploaded in https://github.com/csleemooo/BD_noise_robust_kernel_estimation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arjomand Bigdeli, S., Zwicker, M., Favaro, P., Jin, M.: Deep mean-shift priors for image restoration. Advances in Neural Information Processing Systems 30 (2017)
Binding, J., Mikula, S., Denk, W.: Low-dosage maximum-a-posteriori focusing and stigmation. Microsc. Microanal. 19(1), 38–55 (2013)
Bredell, G., Erdil, E., Weber, B., Konukoglu, E.: Wiener guided dip for unsupervised blind image deconvolution. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3047–3056 (2023)
Chen, L., Fang, F., Lei, S., Li, F., Zhang, G.: Enhanced sparse model for blind deblurring. In: European Conference on Computer Vision, pp. 631–646. Springer (2020)
Cho, S., Lee, S.: Fast motion deblurring. In: ACM SIGGRAPH Asia 2009 papers, pp. 1–8 (2009)
Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: Diverse image synthesis for multiple domains. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)
Chung, H., Kim, J., Kim, S., Ye, J.C.: Parallel diffusion models of operator and image for blind inverse problems. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6059–6069 (2023)
Dhawan, A.P., Rangayyan, R.M., Gordon, R.: Image restoration by wiener deconvolution in limited-view computed tomography. Appl. Opt. 24(23), 4013–4020 (1985)
Dong, J., Pan, J., Sun, D., Su, Z., Yang, M.H.: Learning data terms for non-blind deblurring. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 748–763 (2018)
Dong, J., Roth, S., Schiele, B.: Deep wiener deconvolution: wiener meets deep learning for image deblurring. Adv. Neural. Inf. Process. Syst. 33, 1048–1059 (2020)
Gandelsman, Y., Shocher, A., Irani, M.: “double-dip”: unsupervised image decomposition via coupled deep-image-priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11026–11035 (2019)
Gonzalez, R.C.: Digital image processing. Pearson education india (2009)
Helmchen, F., Denk, W.: Deep tissue two-photon microscopy. Nat. Methods 2(12), 932–940 (2005)
Jin, M., Roth, S., Favaro, P.: Noise-blind image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3510–3518 (2017)
Jin, M., Roth, S., Favaro, P.: Normalized blind deconvolution. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 668–684 (2018)
Joshi, N., Szeliski, R., Kriegman, D.J.: Psf estimation using sharp edge prediction. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–8. IEEE (2008)
Kawasaki, T., Nakano, T., Hirose, K.: Developing an aberration-corrected schottky emission sem and method for measuring aberration. Microelectron. Eng. 86(4–6), 1017–1020 (2009)
Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR 2011, pp. 233–240. IEEE (2011)
Kruse, J., Rother, C., Schmidt, U.: Learning to push the limits of efficient fft-based image deconvolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4586–4594 (2017)
Kubo, R., Toda, M., Hashitsume, N.: Statistical physics II: nonequilibrium statistical mechanics, vol. 31. Springer Science & Business Media (2012)
Lampard, D.: Generalization of the wiener-khintchine theorem to nonstationary processes. J. Appl. Phys. 25(6), 802–803 (1954)
Lee, W., Nam, H.S., Kim, Y.G., Kim, Y.J., Lee, J.H., Yoo, H.: Robust autofocusing for scanning electron microscopy based on a dual deep learning network. Sci. Rep. 11(1), 20933 (2021)
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964–1971. IEEE (2009)
Li, J., Luisier, F., Blu, T.: Pure-let image deconvolution. IEEE Trans. Image Process. 27(1), 92–105 (2017)
Lifshin, E., Kandel, Y.P., Moore, R.L.: Improving scanning electron microscope resolution for near planar samples through the use of image restoration. Microsc. Microanal. 20(1), 78–89 (2014)
Lu, Y., Zhang, X., Li, H.: A simplified focusing and astigmatism correction method for a scanning electron microscope. AIP Advances 8(1) (2018)
Na, J., Kim, G., Kang, S.H., Kim, S.J., Lee, S.: Deep learning-based discriminative refocusing of scanning electron microscopy images for materials science. Acta Mater. 214, 116987 (2021)
Nan, Y., Quan, Y., Ji, H.: Variational-em-based deep learning for noise-blind image deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3626–3635 (2020)
Pan, J., Hu, Z., Su, Z., Yang, M.H.: Deblurring text images via l0-regularized intensity and gradient prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2901–2908 (2014)
Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1628–1636 (2016)
Perrone, D., Favaro, P.: Total variation blind deconvolution: the devil is in the details. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2909–2916 (2014)
Reimer, L.: Scanning electron microscopy: physics of image formation and microanalysis. Meas. Sci. Technol. 11(12), 1826–1826 (2000)
Ren, D., Zhang, K., Wang, Q., Hu, Q., Zuo, W.: Neural blind deconvolution using deep priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3341–3350 (2020)
Roels, J., Aelterman, J., De Vylder, J., Luong, H., Saeys, Y., Philips, W.: Bayesian deconvolution of scanning electron microscopy images using point-spread function estimation and non-local regularization. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 443–447. IEEE (2016)
Sanghvi, Y., Mao, Z., Chan, S.H.: Structured kernel estimation for photon-limited deconvolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9863–9872 (2023)
Schubert, P.J., Saxena, R., Kornfeld, J.: Deepfocus: Fast focus and astigmatism correction for electron microscopy. arXiv preprint arXiv:2305.04977 (2023)
Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. (tog) 27(3), 1–10 (2008)
Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur kernel estimation using patch priors. In: IEEE International Conference on Computational Photography (ICCP), pp. 1–8. IEEE (2013)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)
Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part I 11, pp. 157–170. Springer (2010)
Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1114 (2013)
Xue, F., Luisier, F., Blu, T.: Multi-wiener sure-let deconvolution. IEEE Trans. Image Process. 22(5), 1954–1968 (2013)
Zotta, M.D., Nevins, M.C., Hailstone, R.K., Lifshin, E.: The determination and application of the point spread function in the scanning electron microscope. Microsc. Microanal. 24(4), 396–405 (2018)
Zuo, W., Ren, D., Zhang, D., Gu, S., Zhang, L.: Learning iteration-wise generalized shrinkage-thresholding operators for blind deconvolution. IEEE Trans. Image Process. 25(4), 1751–1764 (2016)
Acknowledgements
This work was supported by the Samsung Research Funding and Incubation Center of Samsung Electronics grant SRFC-IT2002-03, Samsung Electronics Co., Ltd. (IO220908-02403-01), and the National Research Foundation of Korea grant funded by the Korean government (Grant Nos. NRF-2021R1A5A1032937, NRF-2021R1C1C1011307, RS-2023-00251628, and RS-2024-00397673).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lee, C. et al. (2025). Blind Image Deblurring with Noise-Robust Kernel Estimation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15078. Springer, Cham. https://doi.org/10.1007/978-3-031-72661-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-72661-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72660-6
Online ISBN: 978-3-031-72661-3
eBook Packages: Computer ScienceComputer Science (R0)