Skip to main content

VISAGE: Video Instance Segmentation with Appearance-Guided Enhancement

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

In recent years, online Video Instance Segmentation (VIS) methods have shown remarkable advancement with their powerful query-based detectors. Utilizing the output queries of the detector at the frame-level, these methods achieve high accuracy on challenging benchmarks. However, our observations demonstrate that these methods heavily rely on location information, which often causes incorrect associations between objects. This paper presents that a key axis of object matching in trackers is appearance information, which becomes greatly instructive under conditions where positional cues are insufficient for distinguishing their identities. Therefore, we suggest a simple yet powerful extension to object decoders that explicitly extract embeddings from backbone features and drive queries to capture the appearances of objects, which greatly enhances instance association accuracy. Furthermore, recognizing the limitations of existing benchmarks in fully evaluating appearance awareness, we have constructed a synthetic dataset to rigorously validate our method. By effectively resolving the over-reliance on location information, we achieve state-of-the-art results on YouTube-VIS 2019/2021 and Occluded VIS (OVIS). Code is available at https://github.com/KimHanjung/VISAGE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Athar, A., Mahadevan, S., Os̆ep, A., Leal-Taixé, L., Leibe, B.: STEm-seg: spatio-temporal embeddings for instance segmentation in videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI, pp. 158–177. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_10

    Chapter  Google Scholar 

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I, pp. 213–229. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  4. Cheng, B., Choudhuri, A., Misra, I., Kirillov, A., Girdhar, R., Schwing, A.G.: Mask2former for video instance segmentation. arXiv preprint arXiv:2112.10764 (2021)

  5. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: CVPR (2022)

    Google Scholar 

  6. Choudhuri, A., Chowdhary, G., Schwing, A.G.: Context-aware relative object queries to unify video instance and panoptic segmentation. In: CVPR (2023)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  8. Fischer, T., et al.: QDTrack: quasi-dense similarity learning for appearance-only multiple object tracking. TPAMI (2023)

    Google Scholar 

  9. Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for instance segmentation. In: CVPR (2021)

    Google Scholar 

  10. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  11. Han, S.H., et al.: VISOLO: grid-based space-time aggregation for efficient online video instance segmentation. In: CVPR (2022)

    Google Scholar 

  12. He, F., et al.: InsPro: propagating instance query and proposal for online video instance segmentation. NeurIPS 35, 19370–19383 (2022)

    Google Scholar 

  13. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  15. Heo, M., et al.: A generalized framework for video instance segmentation. In: CVPR (2023)

    Google Scholar 

  16. Heo, M., Hwang, S., Oh, S.W., Lee, J.Y., Kim, S.J.: Vita: Video instance segmentation via object token association. NeurIPS (2022)

    Google Scholar 

  17. Huang, D.A., Yu, Z., Anandkumar, A.: MinVIS: a minimal video instance segmentation framework without video-based training. NeurIPS 35, 31265–31277 (2022)

    Google Scholar 

  18. Hwang, S., Heo, M., Oh, S.W., Kim, S.J.: Video instance segmentation using inter-frame communication transformers. NeurIPS 34, 13352–13363 (2021)

    Google Scholar 

  19. Ke, L., Li, X., Danelljan, M., Tai, Y.W., Tang, C.K., Yu, F.: Prototypical cross-attention networks for multiple object tracking and segmentation. NeurIPS 34, 1192–1203 (2021)

    Google Scholar 

  20. Kim, D., Woo, S., Lee, J.Y., Kweon, I.S.: Video panoptic segmentation. In: CVPR (2020)

    Google Scholar 

  21. Kuhn, H.W.: The hungarian method for the assignment problem. NRL 2(1-2), 83–97 (1955)

    Google Scholar 

  22. Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging composite and real: towards end-to-end deep image matting. Int. J. Comput. Vision 130(2), 246–266 (2022). https://doi.org/10.1007/s11263-021-01541-0

    Article  Google Scholar 

  23. Li, J., Yu, B., Rao, Y., Zhou, J., Lu, J.: TCOVIS: temporally consistent online video instance segmentation. In: ICCV (2023)

    Google Scholar 

  24. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, pp. 740–755. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  25. Qi, J., et al.: Occluded video instance segmentation. arXiv preprint arXiv:2102.01558 (2021)

  26. Qi, J., et al.: Occluded video instance segmentation: a benchmark. IJCV (2022). https://doi.org/10.1007/s11263-022-01629-1

  27. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. NeurIPS 29 (2016)

    Google Scholar 

  28. Wang, Y., et al.: End-to-end video instance segmentation with transformers. In: CVPR (2020)

    Google Scholar 

  29. Wu, J., et al.: Efficient video instance segmentation via tracklet query and proposal. In: CVPR (2022)

    Google Scholar 

  30. Wu, J., Jiang, Y., Zhang, W., Bai, X., Bai, S.: SeqFormer: a frustratingly simple model for video instance segmentation. In: ECCV (2022)

    Google Scholar 

  31. Wu, J., Liu, Q., Jiang, Y., Bai, S., Yuille, A., Bai, X.: In defense of online models for video instance segmentation. In: ECCV (2022)

    Google Scholar 

  32. Yang, L., Fan, Y., Xu, N.: Video instance segmentation. In: ICCV (2019)

    Google Scholar 

  33. Yang, L., Fan, Y., Xu, N.: The 3rd large-scale video object segmentation challenge - video instance segmentation track (2021)

    Google Scholar 

  34. Yang, L., Fan, Y., Xu, N.: The 4th large-scale video object segmentation challenge - video instance segmentation track (2022)

    Google Scholar 

  35. Yang, S., et al.: Crossover learning for fast online video instance segmentation. In: ICCV (2021)

    Google Scholar 

  36. Yang, S., et al.: Temporally efficient vision transformer for video instance segmentation. In: CVPR (2022)

    Google Scholar 

  37. Ying, K., et al.: CTVIS: consistent training for online video instance segmentation. In: ICCV (2023)

    Google Scholar 

  38. Zhang, T., et al.: DVIS: decoupled video instance segmentation framework. In: ICCV (2023)

    Google Scholar 

  39. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: ICLR (2021)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (Artificial Intelligence Graduate School Program, Yonsei University, under Grant 2020-0-01361) and Artificial Intelligence Innovation Hub under Grant RS-2021-II212068.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 69814 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, H., Kang, J., Heo, M., Hwang, S., Oh, S.W., Kim, S.J. (2025). VISAGE: Video Instance Segmentation with Appearance-Guided Enhancement. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15065. Springer, Cham. https://doi.org/10.1007/978-3-031-72667-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72667-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72666-8

  • Online ISBN: 978-3-031-72667-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics