Skip to main content

TF-FAS: Twofold-Element Fine-Grained Semantic Guidance for Generalizable Face Anti-spoofing

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Generalizable Face anti-spoofing (FAS) approaches have recently garnered considerable attention due to their robustness in unseen scenarios. Some recent methods incorporate vision-language models into FAS, leveraging their impressive pre-trained performance to improve the generalization. However, these methods only utilize coarse-grained or single-element prompts for fine-tuning FAS tasks, without fully exploring the potential of language supervision, leading to unsatisfactory generalization ability. To address these concerns, we propose a novel framework called TF-FAS, which aims to thoroughly explore and harness twofold-element fine-grained semantic guidance to enhance generalization. Specifically, the Content Element Decoupling Module (CEDM) is proposed to comprehensively explore the semantic elements related to content. It is subsequently employed to supervise the decoupling of categorical features from content-related features, thereby enhancing the generalization abilities. Moreover, recognizing the subtle differences within the data of each class in FAS, we present a Fine-Grained Categorical Element Module (FCEM) to explore fine-grained categorical element guidance, then adaptively integrate them to facilitate the distribution modeling for each class. Comprehensive experiments and analysis demonstrate the superiority of our method over state-of-the-art competitors. Code: https://github.com/xudongww/TF-FAS

X. Wang and K.-Y. Zhang—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achiam, J., et al.: GPT-4 technical report. arXiv preprint arXiv:2303.08774 (2023)

  2. Agarwal, A., Singh, R., Vatsa, M.: Face anti-spoofing using Haralick features. In: International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–6 (2016)

    Google Scholar 

  3. Alexey, D.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv: 2010.11929 (2020)

  4. Anjos, A., Marcel, S.: Counter-measures to photo attacks in face recognition: a public database and a baseline. In: International Joint Conference on Biometrics (IJCB), pp. 1–7 (2011)

    Google Scholar 

  5. Belghazi, M.I., et al.: MINE: mutual information neural estimation. arXiv preprint arXiv:1801.04062 (2018)

  6. Boulkenafet, Z., Komulainen, J., Hadid, A.: Face anti-spoofing based on color texture analysis. In: IEEE International Conference on Image Processing (ICIP), pp. 2636–2640 (2015)

    Google Scholar 

  7. Boulkenafet, Z., Komulainen, J., Hadid, A.: Face antispoofing using speeded-up robust features and Fisher vector encoding. IEEE Signal Process. Lett. (SPL) 24, 41–145 (2016)

    Google Scholar 

  8. Boulkenafet, Z., Komulainen, J., Li, L., Feng, X., Hadid, A.: OULU-NPU: a mobile face presentation attack database with real-world variations. In: IEEE International Conference on Automatic Face & Gesture Recognition (FG), pp. 612–618 (2017)

    Google Scholar 

  9. Cai, R., et al.: Rehearsal-free domain continual face anti-spoofing: generalize more and forget less. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8037–8048 (2023)

    Google Scholar 

  10. Cai, R., et al.: S-adapter: generalizing vision transformer for face anti-spoofing with statistical tokens. IEEE Trans. Inf. Forensics Secur. (TIFS) (2024)

    Google Scholar 

  11. Chen, Z., et al.: Generalizable representation learning for mixture domain face anti-spoofing. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 1132–1139 (2021)

    Google Scholar 

  12. Cheng, F., Wang, X., Lei, J., Crandall, D., Bansal, M., Bertasius, G.: VINDLU: a recipe for effective video-and-language pretraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10739–10750 (2023)

    Google Scholar 

  13. Cheng, P., Hao, W., Dai, S., Liu, J., Gan, Z., Carin, L.: CLUB: a contrastive log-ratio upper bound of mutual information. In: International Conference on Machine Learning (ICML), pp. 1779–1788 (2020)

    Google Scholar 

  14. Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–7 (2012)

    Google Scholar 

  15. Cui, Q., et al.: Contrastive vision-language pre-training with limited resources. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13696, pp. 236–253. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20059-5_14

    Chapter  Google Scholar 

  16. Dai, H., et al.: AugGPT: leveraging chatGPT for text data augmentation. arXiv preprint arXiv:2302.13007 (2023)

  17. Du, Z., Li, J., Zuo, L., Zhu, L., Lu, K.: Energy-based domain generalization for face anti-spoofing. In: ACM International Conference on Multimedia (ACM MM), pp. 1749–1757 (2022)

    Google Scholar 

  18. Erdogmus, N., Marcel, S.: Spoofing 2D face recognition systems with 3D masks. In: Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–8 (2013)

    Google Scholar 

  19. Fang, H., Liu, A., Jiang, N., Lu, Q., Zhao, G., Wan, J.: VL-FAS: domain generalization via vision-language model for face anti-spoofing. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4770–4774 (2024)

    Google Scholar 

  20. Fei, J., Wang, T., Zhang, J., He, Z., Wang, C., Zheng, F.: Transferable decoding with visual entities for zero-shot image captioning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3136–3146 (2023)

    Google Scholar 

  21. de Freitas Pereira, T., Anjos, A., De Martino, J.M., Marcel, S.: LBP-top based countermeasure against face spoofing attacks. In: Computer Vision-ACCV 2012 Workshops: ACCV 2012 International Workshops (ACCV), pp. 121–132 (2013)

    Google Scholar 

  22. George, A., Marcel, S.: On the effectiveness of vision transformers for zero-shot face anti-spoofing. In: International Joint Conference on Biometrics (IJCB), pp. 1–8 (2021)

    Google Scholar 

  23. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-classification networks for unsupervised domain adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_36

    Chapter  Google Scholar 

  24. Goyal, S., Kumar, A., Garg, S., Kolter, Z., Raghunathan, A.: Finetune like you pretrain: improved finetuning of zero-shot vision models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19338–19347 (2023)

    Google Scholar 

  25. Hu, L., Kan, M., Shan, S., Chen, X.: Duplex generative adversarial network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1498–1507 (2018)

    Google Scholar 

  26. Hu, X., et al.: Scaling up vision-language pre-training for image captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17980–17989 (2022)

    Google Scholar 

  27. Huang, H.P., et al.: Adaptive transformers for robust few-shot cross-domain face anti-spoofing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13673, pp. 37–54. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19778-9_3

    Chapter  Google Scholar 

  28. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning (ICML), pp. 4904–4916 (2021)

    Google Scholar 

  29. Jia, Y., Zhang, J., Shan, S., Chen, X.: Single-side domain generalization for face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8484–8493 (2020)

    Google Scholar 

  30. Jia, Y., Zhang, J., Shan, S., Chen, X.: Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing. Pattern Recognit. (PR) 115, 107888 (2021)

    Google Scholar 

  31. Khosla, P., et al.: Supervised contrastive learning. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 18661–18673 (2020)

    Google Scholar 

  32. Kim, G., Eum, S., Suhr, J.K., Kim, D.I., Park, K.R., Kim, J.: Face liveness detection based on texture and frequency analyses. In: International Conference on Biometrics (ICB), pp. 67–72 (2012)

    Google Scholar 

  33. Kim, S., Yu, S., Kim, K., Ban, Y., Lee, S.: Face liveness detection using variable focusing. In: International Conference on Biometrics (ICB), pp. 1–6 (2013)

    Google Scholar 

  34. Kim, Y.E., Lee, S.W.: Domain generalization with pseudo-domain label for face anti-spoofing. In: Asian Conference on Pattern Recognition (ACPR), pp. 431–442 (2021)

    Google Scholar 

  35. Komulainen, J., Hadid, A., Pietikäinen, M.: Context based face anti-spoofing. In: International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8 (2013)

    Google Scholar 

  36. Le, B.M., Woo, S.S.: Gradient alignment for cross-domain face anti-spoofing. arXiv preprint arXiv:2402.18817 (2024)

  37. Li, H., Li, W., Cao, H., Wang, S., Huang, F., Kot, A.C.: Unsupervised domain adaptation for face anti-spoofing. IEEE Trans. Inf. Forensics Secur. (TIFS) 13, 1794–1809 (2018)

    Article  Google Scholar 

  38. Li, J., Li, D., Xiong, C., Hoi, S.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: International Conference on Machine Learning (ICML), pp. 12888–12900 (2022)

    Google Scholar 

  39. Li, P., Liu, G., He, J., Zhao, Z., Zhong, S.: Masked vision and language pre-training with unimodal and multimodal contrastive losses for medical visual question answering. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14220, pp. 374–383. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_36

    Chapter  Google Scholar 

  40. Li, P., Liu, G., Tan, L., Liao, J., Zhong, S.: Self-supervised vision-language pretraining for medial visual question answering. In: International Symposium on Biomedical Imaging (ISBI), pp. 1–5 (2023)

    Google Scholar 

  41. Liao, C.H., Chen, W.C., Liu, H.T., Yeh, Y.R., Hu, M.C., Chen, C.S.: Domain invariant vision transformer learning for face anti-spoofing. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). pp. 6098–6107 (2023)

    Google Scholar 

  42. Liu, A., et al.: FM-ViT: flexible modal vision transformers for face anti-spoofing. IEEE Trans. Inf. Forensics Secur. (TIFS) 18, 4775–4786 (2023)

    Article  Google Scholar 

  43. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. In: Advances in Neural Information Processing Systems (NeurIPS) (2024)

    Google Scholar 

  44. Liu, M., Mu, J., Yu, Z., Ruan, K., Shu, B., Yang, J.: Adversarial learning and decomposition-based domain generalization for face anti-spoofing. Pattern Recognit. Lett. (PRL) 155, 171–177 (2022)

    Article  Google Scholar 

  45. Liu, S., Lu, S., Xu, H., Yang, J., Ding, S., Ma, L.: Feature generation and hypothesis verification for reliable face anti-spoofing. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 1782–1791 (2022)

    Google Scholar 

  46. Liu, S., et al.: Adaptive normalized representation learning for generalizable face anti-spoofing. In: ACM International Conference on Multimedia (ACM MM), pp. 1469–1477 (2021)

    Google Scholar 

  47. Liu, S., et al.: Dual reweighting domain generalization for face presentation attack detection. arXiv preprint arXiv:2106.16128 (2021)

  48. Liu, Y., Chen, Y., Dai, W., Gou, M., Huang, C.T., Xiong, H.: Source-free domain adaptation with contrastive domain alignment and self-supervised exploration for face anti-spoofing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13672, pp. 511–528. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19775-8_30

    Chapter  Google Scholar 

  49. Liu, Y., Chen, Y., Dai, W., Gou, M., Huang, C.T., Xiong, H.: Source-free domain adaptation with domain generalized pretraining for face anti-spoofing. IEEE Trans. Pattern Anal. Mach.Intell. (TPAMI) 46, 5430–5448 (2024)

    Article  Google Scholar 

  50. Liu, Y., et al.: Towards unsupervised domain generalization for face anti-spoofing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2023)

    Google Scholar 

  51. Mu, L., et al: TEG-DG: textually guided domain generalization for face anti-spoofing. arXiv preprint arXiv:2311.18420 (2023)

  52. Nag, S., Zhu, X., Song, Y.Z., Xiang, T.: Zero-shot temporal action detection via vision-language prompting. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13663, pp. 681–697. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20062-5_39

    Chapter  Google Scholar 

  53. Niu, X., Yu, Z., Han, H., Li, X., Shan, S., Zhao, G.: Video-based remote physiological measurement via cross-verified feature disentangling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 295–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_18

    Chapter  Google Scholar 

  54. Panwar, A., Singh, P., Saha, S., Paudel, D.P., Van Gool, L.: Unsupervised compound domain adaptation for face anti-spoofing. In: IEEE International Conference on Automatic Face & Gesture Recognition (FG), pp. 1–8 (2021)

    Google Scholar 

  55. Parelli, M., et al.: Clip-guided vision-language pre-training for question answering in 3D scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5606–5611 (2023)

    Google Scholar 

  56. Patel, K., Han, H., Jain, A.K., Ott, G.: Live face video vs. spoof face video: use of moiré patterns to detect replay video attacks. In: International Conference on Biometrics (ICB), pp. 98–105 (2015)

    Google Scholar 

  57. Pramanick, S., et al.: EgoVLPv2: egocentric video-language pre-training with fusion in the backbone. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5285–5297 (2023)

    Google Scholar 

  58. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning (ICML), pp. 8748–8763 (2021)

    Google Scholar 

  59. Sarhan, M.H., Navab, N., Eslami, A., Albarqouni, S.: Fairness by learning orthogonal disentangled representations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 746–761. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_44

    Chapter  Google Scholar 

  60. Schwartz, W.R., Rocha, A., Pedrini, H.: Face spoofing detection through partial least squares and low-level descriptors. In: International Joint Conference on Biometrics (IJCB), pp. 1–8 (2011)

    Google Scholar 

  61. Shao, R., Lan, X., Li, J., Yuen, P.C.: Multi-adversarial discriminative deep domain generalization for face presentation attack detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  62. Shao, R., Lan, X., Li, J., Yuen, P.C.: Multi-adversarial discriminative deep domain generalization for face presentation attack detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10023–10031 (2019)

    Google Scholar 

  63. Shao, R., Lan, X., Yuen, P.C.: Regularized fine-grained meta face anti-spoofing. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 11974–11981 (2020)

    Google Scholar 

  64. Shu, M., et al.: Test-time prompt tuning for zero-shot generalization in vision-language models. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 14274–14289 (2022)

    Google Scholar 

  65. Singh, A.K., Joshi, P., Nandi, G.C.: Face liveness detection through face structure analysis. Int. J. Appl. Pattern Recognit. (IJAPR) 1, 338–360 (2014)

    Article  Google Scholar 

  66. Smith, D.F., Wiliem, A., Lovell, B.C.: Face recognition on consumer devices: reflections on replay attacks. IEEE Trans. Inf. Forensics Secur. (TIFS) 10, 736–745 (2015)

    Article  Google Scholar 

  67. Srivatsan, K., Naseer, M., Nandakumar, K.: Flip: cross-domain face anti-spoofing with language guidance. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 19685–19696 (2023)

    Google Scholar 

  68. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7167–7176 (2017)

    Google Scholar 

  69. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  70. Wang, C.Y., Lu, Y.D., Yang, S.T., Lai, S.H.: PatchNet: a simple face anti-spoofing framework via fine-grained patch recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20281–20290 (2022)

    Google Scholar 

  71. Wang, G., Han, H., Shan, S., Chen, X.: Improving cross-database face presentation attack detection via adversarial domain adaptation. In: International Conference on Biometrics (ICB), pp. 1–8 (2019)

    Google Scholar 

  72. Wang, G., Han, H., Shan, S., Chen, X.: Cross-domain face presentation attack detection via multi-domain disentangled representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6678–6687 (2020)

    Google Scholar 

  73. Wang, G., Han, H., Shan, S., Chen, X.: Unsupervised adversarial domain adaptation for cross-domain face presentation attack detection. IEEE Trans. Inf. Forensics Secur. (TIFS) 16, 56–69 (2020)

    Article  Google Scholar 

  74. Wang, J., Zhang, J., Bian, Y., Cai, Y., Wang, C., Pu, S.: Self-domain adaptation for face anti-spoofing. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 2746–2754 (2021)

    Google Scholar 

  75. Wang, J., et al.: All in one: exploring unified video-language pre-training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6598–6608 (2023)

    Google Scholar 

  76. Wang, M., Xing, J., Liu, Y.: ActionCLIP: a new paradigm for video action recognition. arXiv preprint arXiv:2109.08472 (2021)

  77. Wang, W., Liu, P., Zheng, H., Ying, R., Wen, F.: Domain generalization for face anti-spoofing via negative data augmentation. IEEE Trans. Inf. Forensics Secur. (TIFS) 18, 2333–2344 (2023)

    Article  Google Scholar 

  78. Wang, W., et al.: Image as a foreign language: Beit pretraining for all vision and vision-language tasks. arXiv preprint arXiv:2208.10442 (2022)

  79. Wang, Z., Xu, Y., Wu, L., Han, H., Ma, Y., Li, Z.: Improving face anti-spoofing via advanced multi-perspective feature learning. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 19, 1–18 (2023)

    Google Scholar 

  80. Wang, Z., et al.: Domain generalization via shuffled style assembly for face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4123–4133 (2022)

    Google Scholar 

  81. Wen, D., Han, H., Jain, A.K.: Face spoof detection with image distortion analysis. IEEE Trans. Inf. Forensics Secur. (TIFS) 10, 746–761 (2015)

    Article  Google Scholar 

  82. Wu, W., Sun, Z., Ouyang, W.: Revisiting classifier: transferring vision-language models for video recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)), pp. 2847–2855 (2023)

    Google Scholar 

  83. Xie, J., Zheng, S.: Zero-shot object detection through vision-language embedding alignment. In: IEEE International Conference on Data Mining Workshops (ICDMW), pp. 1–15 (2022)

    Google Scholar 

  84. Yan, Z., Zhang, Y., Fan, Y., Wu, B.: UCF: uncovering common features for generalizable deepfake detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22412–22423 (2023)

    Google Scholar 

  85. Yang, J., Lei, Z., Liao, S., Li, S.Z.: Face liveness detection with component dependent descriptor. In: International Conference on Biometrics (ICB), pp. 1–6 (2013)

    Google Scholar 

  86. Yin, W., Ming, Y., Tian, L.: A face anti-spoofing method based on optical flow field. In: International Conference on Signal Processing (ICSP), pp. 1333–1337 (2016)

    Google Scholar 

  87. Yu, Z., Li, X., Niu, X., Shi, J., Zhao, G.: Face anti-spoofing with human material perception. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 557–575. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_33

    Chapter  Google Scholar 

  88. Yu, Z., Li, X., Shi, J., Xia, Z., Zhao, G.: Revisiting pixel-wise supervision for face anti-spoofing. IEEE Trans. Biom. Behav. Identity Sci. (T-BIOM) 3:285–295 (2021)

    Google Scholar 

  89. Yu, Z., Wan, J., Qin, Y., Li, X., Li, S.Z., Zhao, G.: NAS-FAS: static-dynamic central difference network search for face anti-spoofing. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 43, 3005–3023 (2020)

    Article  Google Scholar 

  90. Yue, H., et al.: Cyclically disentangled feature translation for face anti-spoofing. arXiv preprint arXiv:2212.03651 (2022)

  91. Zeng, Y., Zhang, X., Li, H.: Multi-grained vision language pre-training: aligning texts with visual concepts. arXiv preprint arXiv:2111.08276 (2021)

  92. Zhang, K.-Y., et al.: Face anti-spoofing via disentangled representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 641–657. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_38

    Chapter  Google Scholar 

  93. Zhang, Y., et al.: CelebA-spoof: large-scale face anti-spoofing dataset with rich annotations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 70–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_5

    Chapter  Google Scholar 

  94. Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: A face antispoofing database with diverse attacks. In: International Conference on Biometrics (ICB), pp. 26–31 (2012)

    Google Scholar 

  95. Zhang, Z., Yi, D., Lei, Z., Li, S.Z.: Face liveness detection by learning multispectral reflectance distributions. In: IEEE International Conference on Automatic Face & Gesture Recognition (FG), pp. 436–441 (2011)

    Google Scholar 

  96. Zheng, G., Liu, Y., Dai, W., Li, C., Zou, J., Xiong, H.: Towards unified representation of invariant-specific features in missing modality face anti-spoofing. In: European Conference on Computer Vision (ECCV) (2024)

    Google Scholar 

  97. Zheng, T., et al.: MFAE: masked frequency autoencoders for domain generalization face anti-spoofing. IEEE Trans. Inf. Forensics Secur. (TIFS) 19, 4058–4069 (2024)

    Article  Google Scholar 

  98. Zheng, T., Yu, Q., Chen, Z., Wang, J.: FAMIM: a novel frequency-domain augmentation masked image model framework for domain generalizable face anti-spoofing. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4470–4474 (2024)

    Google Scholar 

  99. Zheng, Z., Ma, M., Wang, K., Qin, Z., Yue, X., You, Y.: Preventing zero-shot transfer degradation in continual learning of vision-language models. arXiv preprint arXiv:2303.06628 (2023)

  100. Zhong, Y., et al.: RegionCLIP: region-based language-image pretraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16793–16803 (2022)

    Google Scholar 

  101. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. Int. J. Comput. Vis. (IJCV) 130, 2337–2348 (2022)

    Article  Google Scholar 

  102. Zhou, Q., Zhang, K.Y., Yao, T., Lu, X., Ding, S., Ma, L.: Test-time domain generalization for face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 175–187 (2024)

    Google Scholar 

  103. Zhou, Q., et al.: Instance-aware domain generalization for face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20453–20463 (2023)

    Google Scholar 

  104. Zhou, Q., Zhang, K.Y., Yao, T., Yi, R., Ding, S., Ma, L.: Adaptive mixture of experts learning for generalizable face anti-spoofing. In: ACM International Conference on Multimedia (ACM MM), pp. 6009–6018 (2022)

    Google Scholar 

  105. Zhou, Q., et al.: Generative domain adaptation for face anti-spoofing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13665, pp. 335–356. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20065-6_20

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science and Technology Major Project (No. 2022ZD0118201), the National Science Fund for Distinguished Young Scholars (No. 62025603), the National Natural Science Foundation of Chine a (No. U21B2037, No. U22B2051, No. U23A20383, No. 62176222, No. 62176223, No. 62176226, No. 62072386, No. 62072387, No. 62072389, No. 62002305 and No. 62272401), and the Natural Science Foundation of Fujian Province of China (No. 2022J06001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taiping Yao or Pingyang Dai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 464 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X. et al. (2025). TF-FAS: Twofold-Element Fine-Grained Semantic Guidance for Generalizable Face Anti-spoofing. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15065. Springer, Cham. https://doi.org/10.1007/978-3-031-72667-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72667-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72666-8

  • Online ISBN: 978-3-031-72667-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics