Abstract
Accurate estimation of both the external orientation and internal bending angle is crucial for understanding a flexible robot state within its environment. However, existing sensor-based methods face limitations in cost, environmental constraints, and integration issues. Conventional image-based methods struggle with the shape complexity of flexible robots. In this paper, we propose a novel shape-guided configuration-aware learning framework for image-based flexible robot pose estimation. Inspired by the recent advances in 2D-3D joint representation learning, we leverage the 3D shape prior of the flexible robot to enhance its image-based shape representation. We first extract the part-level geometry representation of the 3D shape prior, then adapt this representation to the image by querying the image features corresponding to different robot parts. Furthermore, we present an effective mechanism to dynamically deform the shape prior. It aims to mitigate the shape difference between the adopted shape prior and the flexible robot depicted in the image. This more expressive shape guidance boosts the image-based robot representation and can be effectively used for flexible robot pose refinement. Extensive experiments on a general flexible robot designed for endoluminal surgery demonstrate the advantages of our method over a series of keypoint-based, skeleton-based and direct regression-based methods. Project homepage: https://poseflex.github.io/.
Y. Ma and K. Chen—Equal contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Please refer to the supplementary material to check the depth map.
References
Afham, M., Dissanayake, I., Dissanayake, D., Dharmasiri, A., Thilakarathna, K., Rodrigo, R.: Crosspoint: self-supervised cross-modal contrastive learning for 3d point cloud understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9902–9912 (2022)
Arsomngern, P., Nutanong, S., Suwajanakorn, S.: Learning geometric-aware properties in 2D representation using lightweight cad models, or zero real 3D pairs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21371–21381 (2023)
Baaij, T., et al.: Learning 3D shape proprioception for continuum soft robots with multiple magnetic sensors. Soft Matter 19(1), 44–56 (2023)
Bilić, I., Marić, F., Marković, I., Petrović, I.: A distance-geometric method for recovering robot joint angles from an RGB image. arXiv preprint arXiv:2301.02051 (2023)
Cartucho, J., Wang, C., Huang, B., S. Elson, D., Darzi, A., Giannarou, S.: An enhanced marker pattern that achieves improved accuracy in surgical tool tracking. Comput. Meth. Biomech. Biomed. Eng. Imaging Visual. 10(4), 400–408 (2022)
Chautems, C., Tonazzini, A., Boehler, Q., Jeong, S.H., Floreano, D., Nelson, B.J.: Magnetic continuum device with variable stiffness for minimally invasive surgery. Adv. Intell. Syst. 2(6), 1900086 (2020)
Chin, K., Hellebrekers, T., Majidi, C.: Machine learning for soft robotic sensing and control. Ad. Intell. Syst. 2(6), 1900171 (2020)
Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014)
Gu, G., et al.: A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat. Biomed. Eng. 7(4), 589–598 (2023)
Ha, K.H., et al.: Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite. Adv. Mater. 33(48), 2103320 (2021)
He, Y., et al.: Stretchable optical fibre sensor for soft surgical robot shape reconstruction. Optica Applicata 51(4) (2021)
Heindl, C., Zambal, S., Ponitz, T., Pichler, A., Scharinger, J.: 3D robot pose estimation from 2d images. arXiv preprint arXiv:1902.04987 (2019)
Jing, L., Vahdani, E., Tan, J., Tian, Y.: Cross-modal center loss for 3D cross-modal retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3142–3151 (2021)
Katzschmann, R.K., et al.: Dynamically closed-loop controlled soft robotic arm using a reduced order finite element model with state observer. In: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), pp. 717–724. IEEE (2019)
Khatri, C., Mardia, K.V.: The von mises-fisher matrix distribution in orientation statistics. J. R. Stat. Soc. Ser. B Stat Methodol. 39(1), 95–106 (1977)
Kim, S.Y., et al.: Sustainable manufacturing of sensors onto soft systems using self-coagulating conductive pickering emulsions. Sci. Robot. 5(39), eaay3604 (2020)
Lambrecht, J., Grosenick, P., Meusel, M.: Optimizing keypoint-based single-shot camera-to-robot pose estimation through shape segmentation. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13843–13849. IEEE (2021)
Lee, T.E., et al.: Camera-to-robot pose estimation from a single image. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9426–9432. IEEE (2020)
Lepetit, V., Moreno-Noguer, F., Fua, P.: EPNP: An accurate o (n) solution to the PNP problem. Int. J. Comput. Vision 81(2), 155–166 (2009)
Li, S., Hao, G.: Current trends and prospects in compliant continuum robots: a survey. In: Actuators, vol. 10, p. 145. MDPI (2021)
Lin, M.X., et al.: Single image 3D shape retrieval via cross-modal instance and category contrastive learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11405–11415 (2021)
Loo, J.Y., Ding, Z.Y., Baskaran, V.M., Nurzaman, S.G., Tan, C.P.: Robust multimodal indirect sensing for soft robots via neural network-aided filter-based estimation. Soft Rob. 9(3), 591–612 (2022)
Lu, J., Liu, F., Girerd, C., Yip, M.: Image-based pose estimation and shape reconstruction for robot manipulators and soft, continuum robots via differentiable rendering. In: ICRA 2023-IEEE International Conference on Robotics and Automation (2023)
Lu, J., Richter, F., Lin, S., Yip, M.C.: Tracking snake-like robots in the wild using only a single camera. arXiv preprint arXiv:2309.15700 (2023)
Lu, J., Richter, F., Yip, M.C.: Pose estimation for robot manipulators via keypoint optimization and sim-to-real transfer. IEEE Robot. Autom. Lett. 7(2), 4622–4629 (2022)
Mair, L.O., et al.: Soft capsule magnetic millirobots for region-specific drug delivery in the central nervous system. Front. Robot. AI 8, 702566 (2021)
Monet, F., et al.: High-resolution optical fiber shape sensing of continuum robots: a comparative study. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 8877–8883. IEEE (2020)
Navarro, S.E.: A model-based sensor fusion approach for force and shape estimation in soft robotics. IEEE Robot. Autom. Lett. 5(4), 5621–5628 (2020)
Ozel, S., et al.: A composite soft bending actuation module with integrated curvature sensing. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4963–4968. IEEE (2016)
Prentice, M.J.: Orientation statistics without parametric assumptions. J. R. Stat. Soc. Ser. B Stat Methodol. 48(2), 214–222 (1986)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12179–12188 (2021)
Ranzani, T., Cianchetti, M., Gerboni, G., De Falco, I., Menciassi, A.: A soft modular manipulator for minimally invasive surgery: design and characterization of a single module. IEEE Trans. Rob. 32(1), 187–200 (2016)
Shih, B., et al.: Design considerations for 3D printed, soft, multimaterial resistive sensors for soft robotics. Front. Robot. AI 6, 30 (2019)
Souipas, S., Nguyen, A., Laws, S.G., Davies, B.L., Baena, F.R.: SIMPS-Net: simultaneous pose & segmentation network of surgical tools. IEEE Trans. Med. Robot. Bionics (2023)
Tanaka, K., Minami, Y., Tokudome, Y., Inoue, K., Kuniyoshi, Y., Nakajima, K.: Continuum-body-pose estimation from partial sensor information using recurrent neural networks. IEEE Robot. Autom. Lett. 7(4), 11244–11251 (2022)
Teyssier, M., Parilusyan, B., Roudaut, A., Steimle, J.: Human-like artificial skin sensor for physical human-robot interaction. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3626–3633. IEEE (2021)
Thuruthel, T.G., Shih, B., Laschi, C., Tolley, M.T.: Soft robot perception using embedded soft sensors and recurrent neural networks. Sci. Robot. 4(26), eaav1488 (2019)
Tian, Y., Zhang, J., Yin, Z., Dong, H.: Robot structure prior guided temporal attention for camera-to-robot pose estimation from image sequence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8917–8926 (2023)
Toshimitsu, Y., Wong, K.W., Buchner, T., Katzschmann, R.: Sopra: fabrication & dynamical modeling of a scalable soft continuum robotic arm with integrated proprioceptive sensing. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 653–660. IEEE (2021)
Truby, R.L., Della Santina, C., Rus, D.: Distributed proprioception of 3D configuration in soft, sensorized robots via deep learning. IEEE Robot. Autom. Lett. 5(2), 3299–3306 (2020)
Valassakis, E., Dreczkowski, K., Johns, E.: Learning eye-in-hand camera calibration from a single image. In: Conference on Robot Learning, pp. 1336–1346. PMLR (2022)
Wang, Y., Chen, X., Cao, L., Huang, W., Sun, F., Wang, Y.: Multimodal token fusion for vision transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12186–12195 (2022)
Wang, Y., Ye, T., Cao, L., Huang, W., Sun, F., He, F., Tao, D.: Bridged transformer for vision and point cloud 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12114–12123 (2022)
Webster, R.J., III., Jones, B.A.: Design and kinematic modeling of constant curvature continuum robots: a review. Int. J. Robot. Res. 29(13), 1661–1683 (2010)
Xu, H., Runciman, M., Cartucho, J., Xu, C., Giannarou, S.: Graph-based pose estimation of texture-less surgical tools for autonomous robot control. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 2731–2737. IEEE (2023)
Xu, P., Zhu, X., Clifton, D.A.: Multimodal learning with transformers: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2023)
Yang, J., Gao, M., Li, Z., Gao, S., Wang, F., Zheng, F.: Track anything: segment anything meets videos. arXiv preprint arXiv:2304.11968 (2023)
Yin, Y., Cai, Y., Wang, H., Chen, B.: Fishermatch: semi-supervised rotation regression via entropy-based filtering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11164–11173 (2022)
Yoshimura, M., Marinho, M.M., Harada, K., Mitsuishi, M.: Single-shot pose estimation of surgical robot instruments’ shafts from monocular endoscopic images. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9960–9966. IEEE (2020)
Zhang, L., Ye, M., Chan, P.L., Yang, G.Z.: Real-time surgical tool tracking and pose estimation using a hybrid cylindrical marker. Int. J. Comput. Assist. Radiol. Surg. 12, 921–930 (2017)
Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)
Zhang, Z., Wang, X., Wang, S., Meng, D., Liang, B.: Shape detection and reconstruction of soft robotic arm based on fiber BRAGG grating sensor array. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 978–983. IEEE (2018)
Zhong, X., Zhu, W., Liu, W., Yi, J., Liu, C., Wu, Z.: G-SAM: a robust one-shot keypoint detection framework for PNP based robot pose estimation. J. Intell. Robot. Syst. 109(2), 28 (2023)
Zhu, J., et al.: Intelligent soft surgical robots for next-generation minimally invasive surgery. Adv. Intell. Syst. 3(5), 2100011 (2021)
Acknowledgements
This work was supported in part by Hong Kong Innovation and Technology Commission under Project No. PRP/026/22FX, in part by Agilis Robotics and its subsidiaries, Agilis Robotics Limited and Agilis Robotics Limited (Guangzhou), and in part by a grant from the NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region, China and the National Natural Science Foundation of China (Project No. N_CUHK410/23).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ma, Y. et al. (2025). Shape-Guided Configuration-Aware Learning for Endoscopic-Image-Based Pose Estimation of Flexible Robotic Instruments. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15080. Springer, Cham. https://doi.org/10.1007/978-3-031-72670-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-72670-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72669-9
Online ISBN: 978-3-031-72670-5
eBook Packages: Computer ScienceComputer Science (R0)