Skip to main content

Shape-Guided Configuration-Aware Learning for Endoscopic-Image-Based Pose Estimation of Flexible Robotic Instruments

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15080))

Included in the following conference series:

  • 607 Accesses

Abstract

Accurate estimation of both the external orientation and internal bending angle is crucial for understanding a flexible robot state within its environment. However, existing sensor-based methods face limitations in cost, environmental constraints, and integration issues. Conventional image-based methods struggle with the shape complexity of flexible robots. In this paper, we propose a novel shape-guided configuration-aware learning framework for image-based flexible robot pose estimation. Inspired by the recent advances in 2D-3D joint representation learning, we leverage the 3D shape prior of the flexible robot to enhance its image-based shape representation. We first extract the part-level geometry representation of the 3D shape prior, then adapt this representation to the image by querying the image features corresponding to different robot parts. Furthermore, we present an effective mechanism to dynamically deform the shape prior. It aims to mitigate the shape difference between the adopted shape prior and the flexible robot depicted in the image. This more expressive shape guidance boosts the image-based robot representation and can be effectively used for flexible robot pose refinement. Extensive experiments on a general flexible robot designed for endoluminal surgery demonstrate the advantages of our method over a series of keypoint-based, skeleton-based and direct regression-based methods. Project homepage: https://poseflex.github.io/.

Y. Ma and K. Chen—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Please refer to the supplementary material to check the depth map.

References

  1. Afham, M., Dissanayake, I., Dissanayake, D., Dharmasiri, A., Thilakarathna, K., Rodrigo, R.: Crosspoint: self-supervised cross-modal contrastive learning for 3d point cloud understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9902–9912 (2022)

    Google Scholar 

  2. Arsomngern, P., Nutanong, S., Suwajanakorn, S.: Learning geometric-aware properties in 2D representation using lightweight cad models, or zero real 3D pairs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21371–21381 (2023)

    Google Scholar 

  3. Baaij, T., et al.: Learning 3D shape proprioception for continuum soft robots with multiple magnetic sensors. Soft Matter 19(1), 44–56 (2023)

    Article  Google Scholar 

  4. Bilić, I., Marić, F., Marković, I., Petrović, I.: A distance-geometric method for recovering robot joint angles from an RGB image. arXiv preprint arXiv:2301.02051 (2023)

  5. Cartucho, J., Wang, C., Huang, B., S. Elson, D., Darzi, A., Giannarou, S.: An enhanced marker pattern that achieves improved accuracy in surgical tool tracking. Comput. Meth. Biomech. Biomed. Eng. Imaging Visual. 10(4), 400–408 (2022)

    Google Scholar 

  6. Chautems, C., Tonazzini, A., Boehler, Q., Jeong, S.H., Floreano, D., Nelson, B.J.: Magnetic continuum device with variable stiffness for minimally invasive surgery. Adv. Intell. Syst. 2(6), 1900086 (2020)

    Article  Google Scholar 

  7. Chin, K., Hellebrekers, T., Majidi, C.: Machine learning for soft robotic sensing and control. Ad. Intell. Syst. 2(6), 1900171 (2020)

    Article  Google Scholar 

  8. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014)

    Article  Google Scholar 

  9. Gu, G., et al.: A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat. Biomed. Eng. 7(4), 589–598 (2023)

    Article  Google Scholar 

  10. Ha, K.H., et al.: Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite. Adv. Mater. 33(48), 2103320 (2021)

    Article  Google Scholar 

  11. He, Y., et al.: Stretchable optical fibre sensor for soft surgical robot shape reconstruction. Optica Applicata 51(4) (2021)

    Google Scholar 

  12. Heindl, C., Zambal, S., Ponitz, T., Pichler, A., Scharinger, J.: 3D robot pose estimation from 2d images. arXiv preprint arXiv:1902.04987 (2019)

  13. Jing, L., Vahdani, E., Tan, J., Tian, Y.: Cross-modal center loss for 3D cross-modal retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3142–3151 (2021)

    Google Scholar 

  14. Katzschmann, R.K., et al.: Dynamically closed-loop controlled soft robotic arm using a reduced order finite element model with state observer. In: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), pp. 717–724. IEEE (2019)

    Google Scholar 

  15. Khatri, C., Mardia, K.V.: The von mises-fisher matrix distribution in orientation statistics. J. R. Stat. Soc. Ser. B Stat Methodol. 39(1), 95–106 (1977)

    Article  MathSciNet  Google Scholar 

  16. Kim, S.Y., et al.: Sustainable manufacturing of sensors onto soft systems using self-coagulating conductive pickering emulsions. Sci. Robot. 5(39), eaay3604 (2020)

    Google Scholar 

  17. Lambrecht, J., Grosenick, P., Meusel, M.: Optimizing keypoint-based single-shot camera-to-robot pose estimation through shape segmentation. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13843–13849. IEEE (2021)

    Google Scholar 

  18. Lee, T.E., et al.: Camera-to-robot pose estimation from a single image. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9426–9432. IEEE (2020)

    Google Scholar 

  19. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPNP: An accurate o (n) solution to the PNP problem. Int. J. Comput. Vision 81(2), 155–166 (2009)

    Article  Google Scholar 

  20. Li, S., Hao, G.: Current trends and prospects in compliant continuum robots: a survey. In: Actuators, vol. 10, p. 145. MDPI (2021)

    Google Scholar 

  21. Lin, M.X., et al.: Single image 3D shape retrieval via cross-modal instance and category contrastive learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11405–11415 (2021)

    Google Scholar 

  22. Loo, J.Y., Ding, Z.Y., Baskaran, V.M., Nurzaman, S.G., Tan, C.P.: Robust multimodal indirect sensing for soft robots via neural network-aided filter-based estimation. Soft Rob. 9(3), 591–612 (2022)

    Article  Google Scholar 

  23. Lu, J., Liu, F., Girerd, C., Yip, M.: Image-based pose estimation and shape reconstruction for robot manipulators and soft, continuum robots via differentiable rendering. In: ICRA 2023-IEEE International Conference on Robotics and Automation (2023)

    Google Scholar 

  24. Lu, J., Richter, F., Lin, S., Yip, M.C.: Tracking snake-like robots in the wild using only a single camera. arXiv preprint arXiv:2309.15700 (2023)

  25. Lu, J., Richter, F., Yip, M.C.: Pose estimation for robot manipulators via keypoint optimization and sim-to-real transfer. IEEE Robot. Autom. Lett. 7(2), 4622–4629 (2022)

    Article  Google Scholar 

  26. Mair, L.O., et al.: Soft capsule magnetic millirobots for region-specific drug delivery in the central nervous system. Front. Robot. AI 8, 702566 (2021)

    Article  Google Scholar 

  27. Monet, F., et al.: High-resolution optical fiber shape sensing of continuum robots: a comparative study. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 8877–8883. IEEE (2020)

    Google Scholar 

  28. Navarro, S.E.: A model-based sensor fusion approach for force and shape estimation in soft robotics. IEEE Robot. Autom. Lett. 5(4), 5621–5628 (2020)

    Article  Google Scholar 

  29. Ozel, S., et al.: A composite soft bending actuation module with integrated curvature sensing. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4963–4968. IEEE (2016)

    Google Scholar 

  30. Prentice, M.J.: Orientation statistics without parametric assumptions. J. R. Stat. Soc. Ser. B Stat Methodol. 48(2), 214–222 (1986)

    Article  MathSciNet  Google Scholar 

  31. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  32. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12179–12188 (2021)

    Google Scholar 

  33. Ranzani, T., Cianchetti, M., Gerboni, G., De Falco, I., Menciassi, A.: A soft modular manipulator for minimally invasive surgery: design and characterization of a single module. IEEE Trans. Rob. 32(1), 187–200 (2016)

    Article  Google Scholar 

  34. Shih, B., et al.: Design considerations for 3D printed, soft, multimaterial resistive sensors for soft robotics. Front. Robot. AI 6, 30 (2019)

    Article  Google Scholar 

  35. Souipas, S., Nguyen, A., Laws, S.G., Davies, B.L., Baena, F.R.: SIMPS-Net: simultaneous pose & segmentation network of surgical tools. IEEE Trans. Med. Robot. Bionics (2023)

    Google Scholar 

  36. Tanaka, K., Minami, Y., Tokudome, Y., Inoue, K., Kuniyoshi, Y., Nakajima, K.: Continuum-body-pose estimation from partial sensor information using recurrent neural networks. IEEE Robot. Autom. Lett. 7(4), 11244–11251 (2022)

    Article  Google Scholar 

  37. Teyssier, M., Parilusyan, B., Roudaut, A., Steimle, J.: Human-like artificial skin sensor for physical human-robot interaction. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3626–3633. IEEE (2021)

    Google Scholar 

  38. Thuruthel, T.G., Shih, B., Laschi, C., Tolley, M.T.: Soft robot perception using embedded soft sensors and recurrent neural networks. Sci. Robot. 4(26), eaav1488 (2019)

    Google Scholar 

  39. Tian, Y., Zhang, J., Yin, Z., Dong, H.: Robot structure prior guided temporal attention for camera-to-robot pose estimation from image sequence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8917–8926 (2023)

    Google Scholar 

  40. Toshimitsu, Y., Wong, K.W., Buchner, T., Katzschmann, R.: Sopra: fabrication & dynamical modeling of a scalable soft continuum robotic arm with integrated proprioceptive sensing. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 653–660. IEEE (2021)

    Google Scholar 

  41. Truby, R.L., Della Santina, C., Rus, D.: Distributed proprioception of 3D configuration in soft, sensorized robots via deep learning. IEEE Robot. Autom. Lett. 5(2), 3299–3306 (2020)

    Article  Google Scholar 

  42. Valassakis, E., Dreczkowski, K., Johns, E.: Learning eye-in-hand camera calibration from a single image. In: Conference on Robot Learning, pp. 1336–1346. PMLR (2022)

    Google Scholar 

  43. Wang, Y., Chen, X., Cao, L., Huang, W., Sun, F., Wang, Y.: Multimodal token fusion for vision transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12186–12195 (2022)

    Google Scholar 

  44. Wang, Y., Ye, T., Cao, L., Huang, W., Sun, F., He, F., Tao, D.: Bridged transformer for vision and point cloud 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12114–12123 (2022)

    Google Scholar 

  45. Webster, R.J., III., Jones, B.A.: Design and kinematic modeling of constant curvature continuum robots: a review. Int. J. Robot. Res. 29(13), 1661–1683 (2010)

    Article  Google Scholar 

  46. Xu, H., Runciman, M., Cartucho, J., Xu, C., Giannarou, S.: Graph-based pose estimation of texture-less surgical tools for autonomous robot control. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 2731–2737. IEEE (2023)

    Google Scholar 

  47. Xu, P., Zhu, X., Clifton, D.A.: Multimodal learning with transformers: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2023)

    Google Scholar 

  48. Yang, J., Gao, M., Li, Z., Gao, S., Wang, F., Zheng, F.: Track anything: segment anything meets videos. arXiv preprint arXiv:2304.11968 (2023)

  49. Yin, Y., Cai, Y., Wang, H., Chen, B.: Fishermatch: semi-supervised rotation regression via entropy-based filtering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11164–11173 (2022)

    Google Scholar 

  50. Yoshimura, M., Marinho, M.M., Harada, K., Mitsuishi, M.: Single-shot pose estimation of surgical robot instruments’ shafts from monocular endoscopic images. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9960–9966. IEEE (2020)

    Google Scholar 

  51. Zhang, L., Ye, M., Chan, P.L., Yang, G.Z.: Real-time surgical tool tracking and pose estimation using a hybrid cylindrical marker. Int. J. Comput. Assist. Radiol. Surg. 12, 921–930 (2017)

    Article  Google Scholar 

  52. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)

    Article  Google Scholar 

  53. Zhang, Z., Wang, X., Wang, S., Meng, D., Liang, B.: Shape detection and reconstruction of soft robotic arm based on fiber BRAGG grating sensor array. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 978–983. IEEE (2018)

    Google Scholar 

  54. Zhong, X., Zhu, W., Liu, W., Yi, J., Liu, C., Wu, Z.: G-SAM: a robust one-shot keypoint detection framework for PNP based robot pose estimation. J. Intell. Robot. Syst. 109(2), 28 (2023)

    Article  Google Scholar 

  55. Zhu, J., et al.: Intelligent soft surgical robots for next-generation minimally invasive surgery. Adv. Intell. Syst. 3(5), 2100011 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Hong Kong Innovation and Technology Commission under Project No. PRP/026/22FX, in part by Agilis Robotics and its subsidiaries, Agilis Robotics Limited and Agilis Robotics Limited (Guangzhou), and in part by a grant from the NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region, China and the National Natural Science Foundation of China (Project No. N_CUHK410/23).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ka-Wai Kwok or Qi Dou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7868 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, Y. et al. (2025). Shape-Guided Configuration-Aware Learning for Endoscopic-Image-Based Pose Estimation of Flexible Robotic Instruments. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15080. Springer, Cham. https://doi.org/10.1007/978-3-031-72670-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72670-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72669-9

  • Online ISBN: 978-3-031-72670-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics