Skip to main content

Robust-Wide: Robust Watermarking Against Instruction-Driven Image Editing

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Instruction-driven image editing allows users to quickly edit an image according to text instructions in a forward pass. Nevertheless, malicious users can easily exploit this technique to create fake images, which could cause a crisis of trust and harm the rights of the original image owners. Watermarking is a common solution to trace such malicious behavior. Unfortunately, instruction-driven image editing can significantly change the watermarked image at the semantic level, making current state-of-the-art watermarking methods ineffective. To remedy it, we propose Robust-Wide, the first robust watermarking methodology against instruction-driven image editing. Specifically, we follow the classic structure of deep robust watermarking, consisting of the encoder, noise layer, and decoder. To achieve robustness against semantic distortions, we introduce a novel Partial Instruction-driven Denoising Sampling Guidance (PIDSG) module, which consists of a large variety of instruction injections and substantial modifications of images at different semantic levels. With PIDSG, the encoder tends to embed the watermark into more robust and semantic-aware areas, which remains in existence even after severe image editing. Experiments demonstrate that Robust-Wide  can effectively extract the watermark from the edited image with a low bit error rate of nearly 2.6% for 64-bit watermark messages. Meanwhile, it only induces a neglectable influence on the visual quality and editability of the original images. Moreover, Robust-Wide  holds general robustness against different sampling configurations and other popular image editing methods such as ControlNet-InstructPix2Pix, MagicBrush, Inpainting, and DDIM Inversion. Codes and models are available at https://github.com/hurunyi/Robust-Wide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brooks, T., Holynski, A., Efros, A.A.: InstructPix2Pix: learning to follow image editing instructions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18392–18402 (2023)

    Google Scholar 

  2. Brooks, T., Holynski, A., Efros, A.A.: InstructPix2Pix: learning to follow image editing instructions (2023)

    Google Scholar 

  3. Brown, T., et al.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

  4. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12873–12883 (2021)

    Google Scholar 

  5. Fang, H., et al.: PIMoG: an effective screen-shooting noise-layer simulation for deep-learning-based watermarking network. In: ACM MM, pp. 2267–2275 (2022)

    Google Scholar 

  6. Fu, T.J., Hu, W., Du, X., Wang, W.Y., Yang, Y., Gan, Z.: Guiding instruction-based image editing via multimodal large language models (2023)

    Google Scholar 

  7. Gal, R., et al.: An image is worth one word: Personalizing text-to-image generation using textual inversion. In: The Eleventh International Conference on Learning Representations (2022)

    Google Scholar 

  8. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-or, D.: Prompt-to-prompt image editing with cross-attention control. In: The Eleventh International Conference on Learning Representations (2022)

    Google Scholar 

  9. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

  10. Stable-diffusion inpainting. https://huggingface.co/runwayml/stable-diffusion-inpainting

  11. Jia, J., et al.: RIHOOP: robust invisible hyperlinks in offline and online photographs. IEEE Trans. Cybern. 52(7), 7094–7106 (2020)

    Article  Google Scholar 

  12. Jia, Z., Fang, H., Zhang, W.: MBRS: enhancing robustness of DNN-based watermarking by mini-batch of real and simulated jpeg compression. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 41–49 (2021)

    Google Scholar 

  13. Li, X.: DiffWA: diffusion models for watermark attack (2023)

    Google Scholar 

  14. Ma, R., Guo, M., Hou, Y., Yang, F., Li, Y., Jia, H., Xie, X.: Towards blind watermarking: combining invertible and non-invertible mechanisms. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 1532–1542 (2022)

    Google Scholar 

  15. Meng, C., et al.: SDEdit: guided image synthesis and editing with stochastic differential equations. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=aBsCjcPu_tE

  16. Mokady, R., Hertz, A., Aberman, K., Pritch, Y., Cohen-Or, D.: Null-text inversion for editing real images using guided diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6038–6047 (2023)

    Google Scholar 

  17. Nichol, A.Q., et al.: GLIDE: towards photorealistic image generation and editing with text-guided diffusion models. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 16784–16804. PMLR (17–23 Jul 2022). https://proceedings.mlr.press/v162/nichol22a.html

  18. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  19. Rahman, M.M.: A DWT, DCT and SVD based watermarking technique to protect the image piracy. Int. J. Managing Public Sector Inf. Commun. Technol. 4(2), 21 (2013)

    Google Scholar 

  20. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with CLIP latents (2022)

    Google Scholar 

  21. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III, pp. 234–241. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems, vol. 35, pp. 36479–36494. Curran Associates, Inc. (2022). https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf

  24. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 2256–2265. PMLR, Lille, France (07–09 Jul 2015). https://proceedings.mlr.press/v37/sohl-dickstein15.html

  25. Tancik, M., Mildenhall, B., Ng, R.: StegaStamp: invisible hyperlinks in physical photographs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2117–2126 (2020)

    Google Scholar 

  26. Invisible Watermark, S.: https://github.com/ShieldMnt/invisible-watermark

  27. Wengrowski, E., Dana, K.: Light field messaging with deep photographic steganography. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1515–1524 (2019)

    Google Scholar 

  28. Wu, X., Liao, X., Ou, B.: SepMark: deep separable watermarking for unified source tracing and deepfake detection. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 1190–1201. MM ’23, Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3581783.3612471

  29. Zhang, K., Mo, L., Chen, W., Sun, H., Su, Y.: MagicBrush: a manually annotated dataset for instruction-guided image editing. arXiv preprint arXiv:2306.10012 (2023)

  30. Zhang, K.A., Xu, L., Cuesta-Infante, A., Veeramachaneni, K.: Robust invisible video watermarking with attention. arXiv preprint arXiv:1909.01285 (2019)

  31. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847 (2023)

    Google Scholar 

  32. Zhang, S., et al.: Hive: Harnessing human feedback for instructional visual editing (2023)

    Google Scholar 

  33. Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: Hidden: hiding data with deep networks. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

Download references

Acknowledgements

This study is supported under the RIE2020 Industry Alignment Fund - Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s), and Singapore Ministry of Education (MOE) AcRF Tier 2 MOE-T2EP20121-0006.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Runyi Hu or Jie Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5311 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, R., Zhang, J., Xu, T., Li, J., Zhang, T. (2025). Robust-Wide: Robust Watermarking Against Instruction-Driven Image Editing. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15080. Springer, Cham. https://doi.org/10.1007/978-3-031-72670-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72670-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72669-9

  • Online ISBN: 978-3-031-72670-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics