Skip to main content

Hierarchically Structured Neural Bones for Reconstructing Animatable Objects from Casual Videos

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

We propose a new framework for creating and easily manipulating 3D models of arbitrary objects using casually captured videos. Our core ingredient is a novel hierarchy deformation model, which captures motions of objects with a tree-structured bones. Our hierarchy system decomposes motions based on the granularity and reveals the correlations between parts without exploiting any prior structural knowledge. We further propose to regularize the bones to be positioned at the basis of motions, centers of parts, sufficiently covering related surfaces of the part. This is achieved by our bone occupancy function, which identifies whether a given 3D point is placed within the bone. Coupling the proposed components, our framework offers several clear advantages: (1) Users can obtain animatable 3D models of the arbitrary objects in improved quality from their casual videos, (2) users can manipulate 3D models in an intuitive manner with minimal costs, and (3) users can interactively add or delete control points as necessary. The experimental results demonstrate the efficacy of our framework on diverse instances, in reconstruction quality, interpretability and easier manipulation. Our code is available at https://github.com/subin6/HSNB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alldieck, T., Magnor, M., Bhatnagar, B.L., Theobalt, C., Pons-Moll, G.: Learning to reconstruct people in clothing from a single RGB camera. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1175–1186 (2019)

    Google Scholar 

  2. Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Detailed human avatars from monocular video. In: 2018 International Conference on 3D Vision (3DV), pp. 98–109. IEEE (2018)

    Google Scholar 

  3. Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Video based reconstruction of 3d people models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8387–8397 (2018)

    Google Scholar 

  4. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM SIGGRAPH 2005 Papers, pp. 408–416 (2005)

    Google Scholar 

  5. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 157–164 (2023)

    Google Scholar 

  6. Bozic, A., Zollhofer, M., Theobalt, C., Nießner, M.: Deepdeform: learning non-rigid RGB-D reconstruction with semi-supervised data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7002–7012 (2020)

    Google Scholar 

  7. Cao, A., Johnson, J.: Hexplane: a fast representation for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130–141 (2023)

    Google Scholar 

  8. Collet, A., et al.: High-quality streamable free-viewpoint video. ACM Trans. Graph. (ToG) 34(4), 1–13 (2015)

    Article  Google Scholar 

  9. Dou, M., et al.: Fusion4d: real-time performance capture of challenging scenes. ACM Trans. Graph. (ToG) 35(4), 1–13 (2016)

    Article  Google Scholar 

  10. Fridovich-Keil, S., Meanti, G., Warburg, F.R., Recht, B., Kanazawa, A.: K-planes: explicit radiance fields in space, time, and appearance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488 (2023)

    Google Scholar 

  11. Gao, C., Saraf, A., Kopf, J., Huang, J.B.: Dynamic view synthesis from dynamic monocular video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5712–5721 (2021)

    Google Scholar 

  12. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit functions for 3d shape. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4857–4866 (2020)

    Google Scholar 

  13. Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.: Learning shape templates with structured implicit functions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7154–7164 (2019)

    Google Scholar 

  14. Hertz, A., Perel, O., Giryes, R., Sorkine-Hornung, O., Cohen-Or, D.: Spaghetti: editing implicit shapes through part aware generation. ACM Trans. Graph. (TOG) 41(4), 1–20 (2022)

    Article  Google Scholar 

  15. Innmann, M., Zollhöfer, M., Nießner, M., Theobalt, C., Stamminger, M.: VolumeDeform: real-time volumetric non-rigid reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 362–379. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_22

    Chapter  Google Scholar 

  16. Kirillov, A., Wu, Y., He, K., Girshick, R.: Pointrend: image segmentation as rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9799–9808 (2020)

    Google Scholar 

  17. Kuai, T., Karthikeyan, A., Kant, Y., Mirzaei, A., Gilitschenski, I.: Camm: building category-agnostic and animatable 3d models from monocular videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6586–6596 (2023)

    Google Scholar 

  18. Li, R., et al.: TAVA: template-free animatable volumetric actors. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13692, pp. 419–436. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_25

  19. Li, T., et al.: Neural 3d video synthesis from multi-view video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5521–5531 (2022)

    Google Scholar 

  20. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6508 (2021)

    Google Scholar 

  21. Lin, W., Zheng, C., Yong, J.H., Xu, F.: Occlusionfusion: occlusion-aware motion estimation for real-time dynamic 3d reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1736–1745 (2022)

    Google Scholar 

  22. Liu, L., Habermann, M., Rudnev, V., Sarkar, K., Gu, J., Theobalt, C.: Neural actor: neural free-view synthesis of human actors with pose control. ACM Trans. Graph. (TOG) 40(6), 1–16 (2021)

    Google Scholar 

  23. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. In: Seminal Graphics Papers: Pushing the Boundaries, Volume 2, pp. 851–866 (2023)

    Google Scholar 

  24. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. (1987)

    Google Scholar 

  25. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  26. Neverova, N., Novotny, D., Szafraniec, M., Khalidov, V., Labatut, P., Vedaldi, A.: Continuous surface embeddings. Adv. Neural Inf. Process. Syst. 33, 17258–17270 (2020)

    Google Scholar 

  27. Noguchi, A., Iqbal, U., Tremblay, J., Harada, T., Gallo, O.: Watch it move: unsupervised discovery of 3d joints for re-posing of articulated objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3677–3687 (2022)

    Google Scholar 

  28. Park, K., et al.: Nerfies: deformable neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874 (2021)

    Google Scholar 

  29. Park, K., et al.: Hypernerf: a higher-dimensional representation for topologically varying neural radiance fields. ACM Trans. Graph. 40(6) (2021)

    Google Scholar 

  30. Paschalidou, D., Katharopoulos, A., Geiger, A., Fidler, S.: Neural parts: learning expressive 3d shape abstractions with invertible neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3204–3215 (2021)

    Google Scholar 

  31. Pavlakos, G., et al.: Expressive body capture: 3d hands, face, and body from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10975–10985 (2019)

    Google Scholar 

  32. Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14314–14323 (2021)

    Google Scholar 

  33. Peng, S., et al.: Neural body: implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9054–9063 (2021)

    Google Scholar 

  34. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)

    Google Scholar 

  35. Su, S.Y., Yu, F., Zollhöfer, M., Rhodin, H.: A-NeRF: articulated neural radiance fields for learning human shape, appearance, and pose. Adv. Neural Inf. Process. Syst. 34, 12278–12291 (2021)

    Google Scholar 

  36. Tertikas, K., et al.: Partnerf: generating part-aware editable 3d shapes without 3d supervision. arXiv preprint arXiv:2303.09554 (2023)

  37. Tretschk, E., Tewari, A., Golyanik, V., Zollhöfer, M., Lassner, C., Theobalt, C.: Non-rigid neural radiance fields: reconstruction and novel view synthesis of a dynamic scene from monocular video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12959–12970 (2021)

    Google Scholar 

  38. Tu, T., Li, M.F., Lin, C.H., Cheng, Y.C., Sun, M., Yang, M.H.: Dreamo: articulated 3d reconstruction from a single casual video. arXiv preprint arXiv:2312.02617 (2023)

  39. Vlasic, D., Baran, I., Matusik, W., Popović, J.: Articulated mesh animation from multi-view silhouettes. In: ACM SIGGRAPH 2008 Papers, pp. 1–9 (2008)

    Google Scholar 

  40. Wang, X., et al.: Animatabledreamer: text-guided non-rigid 3d model generation and reconstruction with canonical score distillation. arXiv preprint arXiv:2312.03795 (2023)

  41. Wang, Y., Dong, Y., Sun, F., Yang, X.: Root pose decomposition towards generic non-rigid 3d reconstruction with monocular videos. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13890–13900 (2023)

    Google Scholar 

  42. Weng, C.Y., Curless, B., Srinivasan, P.P., Barron, J.T., Kemelmacher-Shlizerman, I.: Humannerf: free-viewpoint rendering of moving people from monocular video. In: Proceedings of the IEEE/CVF conference on computer vision and pattern Recognition, pp. 16210–16220 (2022)

    Google Scholar 

  43. Wu, Y., Chen, Z., Liu, S., Ren, Z., Wang, S.: Casa: category-agnostic skeletal animal reconstruction. Adv. Neural Inf. Process. Syst. 35, 28559–28574 (2022)

    Google Scholar 

  44. Xian, W., Huang, J.B., Kopf, J., Kim, C.: Space-time neural irradiance fields for free-viewpoint video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9421–9431 (2021)

    Google Scholar 

  45. Xiang, D., Joo, H., Sheikh, Y.: Monocular total capture: Posing face, body, and hands in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10965–10974 (2019)

    Google Scholar 

  46. Xu, Z., Zhou, Y., Kalogerakis, E., Landreth, C., Singh, K.: Rignet: neural rigging for articulated characters. ACM Trans. Graph. 39 (2020)

    Google Scholar 

  47. Yang, G., Ramanan, D.: Volumetric correspondence networks for optical flow. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  48. Yang, G., et al.: Lasr: learning articulated shape reconstruction from a monocular video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15980–15989 (2021)

    Google Scholar 

  49. Yang, G., et al.: ViSER: video-specific surface embeddings for articulated 3D shape reconstruction. Adv. Neural Inf. Process. Syst. 34, 19326–19338 (2021)

    Google Scholar 

  50. Yang, G., Vo, M., Neverova, N., Ramanan, D., Vedaldi, A., Joo, H.: Banmo: building animatable 3d neural models from many casual videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2863–2873 (2022)

    Google Scholar 

  51. Yang, G., Wang, C., Reddy, N.D., Ramanan, D.: Reconstructing animatable categories from videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16995–17005 (2023)

    Google Scholar 

  52. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. Adv. Neural Inf. Process. Syst. 34, 4805–4815 (2021)

    Google Scholar 

  53. Zollhöfer, M., et al.: Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. (ToG) 33(4), 1–12 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. 2022-0-00124), the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT) (NRF- 2022R1A2C2004509), and Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (Artificial Intelligence Graduate School Program, Yonsei University, under Grant 2020-0-01361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subin Jeon .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9567 KB)

Supplementary material 2 (mp4 43825 KB)

Supplementary material 3 (mp4 22160 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jeon, S., Cho, I., Kim, M., Cho, W.O., Kim, S.J. (2025). Hierarchically Structured Neural Bones for Reconstructing Animatable Objects from Casual Videos. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15068. Springer, Cham. https://doi.org/10.1007/978-3-031-72684-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72684-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72683-5

  • Online ISBN: 978-3-031-72684-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics