Skip to main content

FOREST2SEQ: Revitalizing Order Prior for Sequential Indoor Scene Synthesis

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15083))

Included in the following conference series:

  • 289 Accesses

Abstract

Synthesizing realistic 3D indoor scenes is a challenging task that traditionally relies on manual arrangement and annotation by expert designers. Recent advances in autoregressive models have automated this process, but they often lack semantic understanding of the relationships and hierarchies present in real-world scenes, yielding limited performance. In this paper, we propose Forest2Seq, a framework that formulates indoor scene synthesis as an order-aware sequential learning problem. Forest2Seq organizes the inherently unordered collection of scene objects into structured, ordered hierarchical scene trees and forests. By employing a clustering-based algorithm and a breadth-first traversal, Forest2Seq derives meaningful orderings and utilizes a transformer to generate realistic 3D scenes autoregressively. Experimental results on standard benchmarks demonstrate Forest2Seq’s superiority in synthesizing more realistic scenes compared to top-performing baselines, with significant improvements in FID and KL scores. Our additional experiments for downstream tasks and ablation studies also confirm the importance of incorporating order as a prior in 3D scene generation.

Q. Sun and H. Zhou—Equal contributions; Work carried out at SFU by Hang.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://www.ikea.com/pt/en/customer-service/services/planning-consultation

  2. Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. In: NeurIPS (2000)

    Google Scholar 

  3. Bundy, A., Wallen, L.: Breadth-first search. In: Catalogue of Artificial Intelligence Tools (1984)

    Google Scholar 

  4. Chang, A., et al.: Matterport3D: learning from RGB-D data in indoor environments. In: 3DV (2017)

    Google Scholar 

  5. Chang, H., et al.: Muse: text-to-image generation via masked generative transformers. arXiv preprint arXiv:2301.00704 (2023)

  6. Chang, H., Zhang, H., Jiang, L., Liu, C., Freeman, W.T.: MaskGiT: masked generative image transformer. In: CVPR (2022)

    Google Scholar 

  7. Chaudhuri, S., Kalogerakis, E., Giguere, S., Funkhouser, T.: Attribit: content creation with semantic attributes. In: UIST (2013)

    Google Scholar 

  8. Currey, A., Heafield, K.: Unsupervised source hierarchies for low-resource neural machine translation. In: ACL (2018)

    Google Scholar 

  9. Deitke, M., et al.: ProcTHOR: large-scale embodied AI using procedural generation. In: NeurIPS (2022)

    Google Scholar 

  10. Devaranjan, J., Kar, A., Fidler, S.: Meta-sim2: unsupervised learning of scene structure for synthetic data generation. In: ECCV (2020)

    Google Scholar 

  11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)

    Google Scholar 

  12. Dosovitskiy, Aet al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  13. Eriguchi, A., Hashimoto, K., Tsuruoka, Y.: Tree-to-sequence attentional neural machine translation. In: ACL (2016)

    Google Scholar 

  14. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: CVPR (2021)

    Google Scholar 

  15. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD (1996)

    Google Scholar 

  16. Feng, W., et al.: LayoutGPT: compositional visual planning and generation with large language models. arXiv preprint arXiv:2305.15393 (2023)

  17. Fisher, M., Ritchie, D., Savva, M., Funkhouser, T., Hanrahan, P.: Example-based synthesis of 3D object arrangements. ACM TOG 31, 1–11 (2012)

    Article  Google Scholar 

  18. Fisher, M., Savva, M., Li, Y., Hanrahan, P., Nießner, M.: Activity-centric scene synthesis for functional 3D scene modeling. ACM TOG 34, 1–13 (2015)

    Article  Google Scholar 

  19. Fu, H., et al.: 3D-FRONT: 3D furnished rooms with layouts and semantics. In: CVPR (2021)

    Google Scholar 

  20. Fu, H., et al.: 3D-FUTURE: 3D furniture shape with texture. IJCV 129, 3313–3337 (2021)

    Article  Google Scholar 

  21. Fu, Z., et al.: Decoder-only or encoder-decoder? interpreting language model as a regularized encoder-decoder. arXiv preprint arXiv:2304.04052 (2023)

  22. Gani, H., Naseer, M., Yaqub, M.: How to train vision transformer on small-scale datasets? In: BMVC (2022)

    Google Scholar 

  23. Gao, L., Sun, J.M., Mo, K., Lai, Y.K., Guibas, L.J., Yang, J.: SceneHGN: hierarchical graph networks for 3d indoor scene generation with fine-grained geometry. IEEE TPAMI 45, 8902–8919 (2023)

    Article  Google Scholar 

  24. Gu, S., et al.: Vector quantized diffusion model for text-to-image synthesis. In: CVPR (2022)

    Google Scholar 

  25. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: CVPR (2022)

    Google Scholar 

  26. Henderson, P., Subr, K., Ferrari, V.: Automatic generation of constrained furniture layouts. arXiv preprint arXiv:1711.10939 (2017)

  27. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  28. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. (1997)

    Google Scholar 

  29. Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using a neural attention model. In: ACL (2016)

    Google Scholar 

  30. Jiang, Y., Lim, M., Saxena, A.: Learning object arrangements in 3D scenes using human context. arXiv preprint arXiv:1206.6462 (2012)

  31. Kar, A., et al.: Meta-sim: learning to generate synthetic datasets. In: ICCV (2019)

    Google Scholar 

  32. Ke, G., He, D., Liu, T.Y.: Rethinking positional encoding in language pre-training. arXiv preprint arXiv:2006.15595 (2020)

  33. Koh, J.Y., et al.: Simple and effective synthesis of indoor 3d scenes. In: AAAI (2023)

    Google Scholar 

  34. Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set transformer: a framework for attention-based permutation-invariant neural networks. In: ICML (2019)

    Google Scholar 

  35. Leimer, K., Guerrero, P., Weiss, T., Musialski, P.: Layoutenhancer: generating good indoor layouts from imperfect data. In: SIGGRAPH Asia (2022)

    Google Scholar 

  36. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: ACL (2020)

    Google Scholar 

  37. Li, M., et al.: GRAINS: generative recursive autoencoders for indoor scenes. ACM TOG 38, 1–16 (2019)

    Google Scholar 

  38. Li, R., et al.: StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023)

  39. Liu, J., et al.: CLIP-Layout: Style-consistent indoor scene synthesis with semantic furniture embedding. arXiv preprint arXiv:2303.03565 (2023)

  40. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)

    Google Scholar 

  41. Ma, R., Li, H., Zou, C., Liao, Z., Tong, X., Zhang, H.: Action-driven 3D indoor scene evolution. ACM TOG 35, 173-1 (2016)

    Google Scholar 

  42. Ma, R., et al.: Language-driven synthesis of 3D scenes from scene databases. ACM TOG 37, 1–16 (2018)

    Google Scholar 

  43. Merrell, P., Schkufza, E., Li, Z., Agrawala, M., Koltun, V.: Interactive furniture layout using interior design guidelines. ACM TOG 30, 1–10 (2011)

    Article  Google Scholar 

  44. OpenAI: GPT-4 technical report. arXiv preprint arXiv:2303.08774 (2023)

  45. Ouyang, L., et al.: Training language models to follow instructions with human feedback. In: NeurIPS (2022)

    Google Scholar 

  46. Para, W.R., Guerrero, P., Mitra, N., Wonka, P.: COFS: controllable furniture layout synthesis. In: SIGGRAPH (2023)

    Google Scholar 

  47. Paschalidou, D., Kar, A., Shugrina, M., Kreis, K., Geiger, A., Fidler, S.: ATISS: autoregressive transformers for indoor scene synthesis. In: NeurIPS (2021)

    Google Scholar 

  48. Patil, A.G., Patil, S.G., Li, M., Fisher, M., Savva, M., Zhang, H.: Advances in data-driven analysis and synthesis of 3D indoor scenes. Comput. Graph Forum (2023)

    Google Scholar 

  49. Qi, S., Zhu, Y., Huang, S., Jiang, C., Zhu, S.C.: Human-centric indoor scene synthesis using stochastic grammar. In: CVPR (2018)

    Google Scholar 

  50. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  51. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. In: ICML (2019)

    Google Scholar 

  52. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: CVPR (2019)

    Google Scholar 

  53. Ritchie, D., Wang, K., Lin, Y.a.: Fast and flexible indoor scene synthesis via deep convolutional generative models. In: CVPR (2019)

    Google Scholar 

  54. Rubenstein, P.K., et al.: AudioPaLM: a large language model that can speak and listen. arXiv preprint arXiv:2306.12925 (2023)

  55. Savva, M., Chang, A.X., Hanrahan, P., Fisher, M., Nießner, M.: PiGraphs: learning interaction snapshots from observations. ACM TOG 30, 1–10 (2016)

    Article  Google Scholar 

  56. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position representations. arXiv preprint arXiv:1803.02155 (2018)

  57. Socher, R., Lin, C.C.Y., Ng, A.Y., Manning, C.D.: Parsing natural scenes and natural language with recursive neural networks. In: ICML (2011)

    Google Scholar 

  58. Straub, J., et al.: The replica dataset: a digital replica of indoor spaces. arXiv preprint arXiv:1906.05797 (2019)

  59. Tang, J., Nie, Y., Markhasin, L., Dai, A., Thies, J., Nießner, M.: DiffuScene: scene graph denoising diffusion probabilistic model for generative indoor scene synthesis. arXiv preprint arXiv:2303.14207 (2023)

  60. Tang, K., Zhang, H., Wu, B., Luo, W., Liu, W.: Learning to compose dynamic tree structures for visual contexts. In: CVPR (2019)

    Google Scholar 

  61. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  62. Vinyals, O., Bengio, S., Kudlur, M.: Order matters: sequence to sequence for sets. In: ICLR (2016)

    Google Scholar 

  63. Wang, K., Lin, Y.A., Weissmann, B., Savva, M., Chang, A.X., Ritchie, D.: PlanIT: planning and instantiating indoor scenes with relation graph and spatial prior networks. ACM TOG 38, 1–15 (2019)

    Google Scholar 

  64. Wang, X., Yeshwanth, C., Nießner, M.: SceneFormer: indoor scene generation with transformers. In: 3DV (2021)

    Google Scholar 

  65. Wei, Q.A., et al.: LEGO-Net: learning regular rearrangements of objects in rooms. In: CVPR (2023)

    Google Scholar 

  66. Weiss, T., et al.: Fast and scalable position-based layout synthesis. IEEE TVCG 25, 3231–3243 (2018)

    Google Scholar 

  67. Xu, K., Wu, L., Wang, Z., Feng, Y., Witbrock, M., Sheinin, V.: Graph2seq: graph to sequence learning with attention-based neural networks. arXiv preprint arXiv:1804.00823 (2018)

  68. Yu, L.F., Yeung, S.K., Tang, C.K., Terzopoulos, D., Chan, T.F., Osher, S.J.: Make It Home: automatic optimization of furniture arrangement. ACM TOG 30 (2011)

    Google Scholar 

  69. Yu, L.F., Yeung, S.K., Terzopoulos, D.: The ClutterPalette: an interactive tool for detailing indoor scenes. IEEE TVCG 22, 1138–1148 (2015)

    Google Scholar 

  70. Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B., Salakhutdinov, R., Smola, A.J.: Deep sets. In: NeurIPS (2017)

    Google Scholar 

  71. Zellers, R., Yatskar, M., Thomson, S., Choi, Y.: Neural motifs: scene graph parsing with global context. In: CVPR (2018)

    Google Scholar 

  72. Zhai, G., Örnek, E.P., Wu, S.C., Di, Y., Tombari, F., Navab, N., Busam, B.: CommonScenes: generating commonsense 3D indoor scenes with scene graphs. arXiv preprint arXiv:2305.16283 (2023)

  73. Zhao, X., Hu, R., Guerrero, P., Mitra, N., Komura, T.: Relationship templates for creating scene variations. ACM TOG 35, 1–13 (2016)

    Google Scholar 

  74. Zhao, Y., et al.: Luminous: indoor scene generation for embodied ai challenges. In: NeurIPSW (2021)

    Google Scholar 

  75. Zhou, Y., While, Z., Kalogerakis, E.: SceneGraphNet: neural message passing for 3D indoor scene augmentation. In: CVPR (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nathan Yan (Cornell) and Prof. Jing Liao (CityU) for useful comments and discussions. This work is supported by National Natural Science Foundation of China under Contract 62021001 and the Youth Innovation Promotion Association CAS. It was also supported by GPU cluster built by MCC Lab of Information Science and Technology Institution, USTC, and the Supercomputing Center of the USTC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Sun .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 14342 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Q., Zhou, H., Zhou, W., Li, L., Li, H. (2025). FOREST2SEQ: Revitalizing Order Prior for Sequential Indoor Scene Synthesis. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15083. Springer, Cham. https://doi.org/10.1007/978-3-031-72698-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72698-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72697-2

  • Online ISBN: 978-3-031-72698-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics