Skip to main content

Spatially-Variant Degradation Model for Dataset-Free Super-Resolution

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

This paper focuses on the dataset-free Blind Image Super-Resolution (BISR). Unlike existing dataset-free BISR methods that focus on obtaining a degradation kernel for the entire image, we are the first to explicitly design a spatially-variant degradation model for each pixel. Our method also benefits from having a significantly smaller number of learnable parameters compared to data-driven spatially-variant BISR methods. Concretely, each pixel’s degradation kernel is expressed as a linear combination of a learnable dictionary composed of a small number of spatially-variant atom kernels. The coefficient matrices of the atom degradation kernels are derived using membership functions of fuzzy set theory. We construct a novel Probabilistic BISR model with tailored likelihood function and prior terms. Subsequently, we employ the Monte Carlo EM algorithm to infer the degradation kernels for each pixel. Our method achieves a significant improvement over other state-of-the-art BISR methods, with an average improvement of 1 dB (\(2\times \)). Code will be released at https://github.com/DeepMed-Lab-ECNU/SVDSR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)

    Google Scholar 

  2. Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-gan. Adv. Neural Inform. Process. Syst. 32 (2019)

    Google Scholar 

  3. Bevilacqua, M., Roumy, A., Guillemot, C., Morel, A.: Low-complexity single image super-resolution based on nonnegative neighbor embedding. In: British Machine Vision Conference (2012)

    Google Scholar 

  4. Chen, X., Zhang, J., Xu, C., Wang, Y., Wang, C., Liu, Y.: Better " cmos" produces clearer images: Learning space-variant blur estimation for blind image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1651–1661 (2023)

    Google Scholar 

  5. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2012)

    Article  MathSciNet  Google Scholar 

  6. Fritsche, M., Gu, S., Timofte, R.: Frequency separation for real-world super-resolution. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3599–3608. IEEE (2019)

    Google Scholar 

  7. He, W., et al.: Non-local meets global: an iterative paradigm for hyperspectral image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 44(4), 2089–2107 (2020)

    Google Scholar 

  8. He, X., Mo, Z., Wang, P., Liu, Y., Yang, M., Cheng, J.: Ode-inspired network design for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1732–1741 (2019)

    Google Scholar 

  9. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  10. Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information multi-distillation network. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2024–2032 (2019)

    Google Scholar 

  11. Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., Huang, F.: Real-world super-resolution via kernel estimation and noise injection. In: proceedings of the IEEE/CVF Conference on Computer Vision And Pattern Recognition Workshops, pp. 466–467 (2020)

    Google Scholar 

  12. Keilmann, A., Godehardt, M., Moghiseh, A., Redenbach, C., Schladitz, K.: Improved anisotropic gaussian filters. arXiv preprint arXiv:2303.13278 (2023)

  13. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  14. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1127–1133 (2010)

    Article  Google Scholar 

  15. Kim, S.Y., Sim, H., Kim, M.: Koalanet: blind super-resolution using kernel-oriented adaptive local adjustment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10611–10620 (2021)

    Google Scholar 

  16. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. Adv. Neural Inform. Process. Syst. 22 (2009)

    Google Scholar 

  17. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-resolution with deep laplacian pyramid networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2599–2613 (2018)

    Article  Google Scholar 

  18. Li, J., Wang, W., Nan, Y., Ji, H.: Self-supervised blind motion deblurring with deep expectation maximization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13986–13996 (2023)

    Google Scholar 

  19. Li, W., Zhou, K., Qi, L., Jiang, N., Lu, J., Jia, J.: Lapar: Linearly-assembled pixel-adaptive regression network for single image super-resolution and beyond. Adv. Neural. Inf. Process. Syst. 33, 20343–20355 (2020)

    Google Scholar 

  20. Liang, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Mutual affine network for spatially variant kernel estimation in blind image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4096–4105 (2021)

    Google Scholar 

  21. Liang, J., Zhang, K., Gu, S., Van Gool, L., Timofte, R.: Flow-based kernel prior with application to blind super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10601–10610 (2021)

    Google Scholar 

  22. Liu, J., Zhang, W., Tang, Y., Tang, J., Wu, G.: Residual feature aggregation network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2359–2368 (2020)

    Google Scholar 

  23. Lu, Z., Li, J., Liu, H., Huang, C., Zhang, L., Zeng, T.: Transformer for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 457–466 (2022)

    Google Scholar 

  24. Maeda, S.: Unpaired image super-resolution using pseudo-supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 291–300 (2020)

    Google Scholar 

  25. Mao, X., Liu, Y., Liu, F., Li, Q., Shen, W., Wang, Y.: Intriguing findings of frequency selection for image deblurring. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 1905–1913 (2023)

    Google Scholar 

  26. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimedia Tools Appli. 76, 21811–21838 (2017)

    Article  Google Scholar 

  27. McLachlan, G.J., Lee, S.X., Rathnayake, S.I.: Finite mixture models. Annual Rev. Statist. Appli. 6, 355–378 (2019)

    Article  MathSciNet  Google Scholar 

  28. Mei, Y., Fan, Y., Zhou, Y., Huang, L., Huang, T.S., Shi, H.: Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5690–5699 (2020)

    Google Scholar 

  29. Mou, C., Wu, Y., Wang, X., Dong, C., Zhang, J., Shan, Y.: Metric learning based interactive modulation for real-world super-resolution. In: European Conference on Computer Vision, pp. 723–740. Springer (2022)

    Google Scholar 

  30. Nagy, J.G., O’Leary, D.P.: Restoring images degraded by spatially variant blur. SIAM J. Sci. Comput. 19(4), 1063–1082 (1998)

    Article  MathSciNet  Google Scholar 

  31. Ren, D., Zhang, K., Wang, Q., Hu, Q., Zuo, W.: Neural blind deconvolution using deep priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3341–3350 (2020)

    Google Scholar 

  32. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  33. Shocher, A., Cohen, N., Irani, M.: “zero-shot” super-resolution using deep internal learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3118–3126 (2018)

    Google Scholar 

  34. Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  35. Tai, Y., Yang, J., Liu, X., Xu, C.: Memnet: a persistent memory network for image restoration. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4539–4547 (2017)

    Google Scholar 

  36. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)

    Google Scholar 

  37. Wang, X., Xie, L., Dong, C., Shan, Y.: Real-esrgan: training real-world blind super-resolution with pure synthetic data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1905–1914 (2021)

    Google Scholar 

  38. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 606–615 (2018)

    Google Scholar 

  39. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  40. Xie, J., Gao, R., Zheng, Z., Zhu, S.C., Wu, Y.N.: Learning dynamic generator model by alternating back-propagation through time. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 5498–5507 (2019)

    Google Scholar 

  41. Yue, Z., Zhao, Q., Xie, J., Zhang, L., Meng, D., Wong, K.Y.K.: Blind image super-resolution with elaborate degradation modeling on noise and kernel. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2128–2138 (2022)

    Google Scholar 

  42. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  43. Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4791–4800 (2021)

    Google Scholar 

  44. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  45. Zhou, H., et al.: Learning correction filter via degradation-adaptive regression for blind single image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12365–12375 (2023)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62101191), Shanghai Natural Science Foundation (Grant No. 21ZR1420800), and the Science and Technology Commission of Shanghai Municipality (Grant No. 22DZ2229004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3044 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, S., Song, H., Li, Q., Wang, Y. (2025). Spatially-Variant Degradation Model for Dataset-Free Super-Resolution. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15083. Springer, Cham. https://doi.org/10.1007/978-3-031-72698-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72698-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72697-2

  • Online ISBN: 978-3-031-72698-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics