Skip to main content

LatentArtiFusion: An Effective and Efficient Histological Artifacts Restoration Framework

  • Conference paper
  • First Online:
Deep Generative Models (DGM4MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15224))

Included in the following conference series:

  • 234 Accesses

Abstract

Histological artifacts pose challenges for both pathologists and Computer-Aided Diagnosis (CAD) systems, leading to errors in analysis. Current approaches for histological artifact restoration, based on Generative Adversarial Networks (GANs) and pixel-level Diffusion Models, suffer from performance limitations and computational inefficiencies. In this paper, we propose a novel framework, LatentArtiFusion, which leverages the latent diffusion model (LDM) to reconstruct histological artifacts with high performance and computational efficiency. Unlike traditional pixel-level diffusion frameworks, LatentArtiFusion executes the restoration process in a lower-dimensional latent space, significantly improving computational efficiency. Moreover, we introduce a novel regional artifact reconstruction algorithm in latent space to prevent mistransfer in non-artifact regions, distinguishing our approach from GAN-based methods. Through extensive experiments on real-world histology datasets, LatentArtiFusion demonstrates remarkable speed, outperforming state-of-the-art pixel-level diffusion frameworks by more than \(30{\times }\). It also consistently surpasses GAN-based methods by at least 5% across multiple evaluation metrics. Furthermore, we evaluate the effectiveness of our proposed framework in downstream tissue classification tasks, showcasing its practical utility. Code is available at https://github.com/bugs-creator/LatentArtiFusion.

Z. He and W. Liu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Pretrained weights are downloaded from https://huggingface.co/runwayml/stable-diffusion-v1-5.

  2. 2.

    Available at https://github.com/zhenqi-he/ArtiFusion.

  3. 3.

    Available at https://github.com/zhenqi-he/transnuseg.

References

  1. Babu, N.A., Anjuga, E.S., Masthan, K., Rajesh, E.: Artifacts in histopathology–a review. Indian Journal of Forensic Medicine and Toxicology (2020)

    Google Scholar 

  2. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: An overview. IEEE Signal Processing Magazine (2018)

    Google Scholar 

  3. Faragallah, O.S., El-Hoseny, H., El-Shafai, W., El-Rahman, W.A., El-Sayed, H.S., El-Rabaie, E.S.M., El-Samie, F.E.A., Geweid, G.G.N.: A comprehensive survey analysis for present solutions of medical image fusion and future directions. IEEE Access (2021)

    Google Scholar 

  4. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Communications of the ACM (2020)

    Google Scholar 

  5. Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: A review. IEEE Reviews in Biomedical Engineering (2009)

    Google Scholar 

  6. Han, D., Yun, S., Heo, B., Yoo, Y.: Rexnet: Diminishing representational bottleneck on convolutional neural network. CVPR (2021)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CVPR (2016)

    Google Scholar 

  8. He, Z., He, J., Ye, J., Shen, Y.: Artifact restoration in histology images with diffusion probabilistic models. In: MICCAI (2023)

    Google Scholar 

  9. He, Z., Unberath, M., Ke, J., Shen, Y.: Transnuseg: A lightweight multi-task transformer for nuclei segmentation. In: MICCAI (2023)

    Google Scholar 

  10. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. CoRR (2020)

    Google Scholar 

  11. Ke, J., Liu, K., Sun, Y., Xue, Y., Huang, J., Lu, Y., Dai, J., Chen, Y., Han, X., Shen, Y., Shen, D.: Artifact detection and restoration in histology images with stain-style and structural preservation. IEEE Transactions on Medical Imaging (2023)

    Google Scholar 

  12. Ke, J., Lu, Y., Shen, Y., Zhu, J., Zhou, Y., Huang, J., Yao, J., Liang, X., Guo, Y., Wei, Z., Liu, S., Huang, Q., Jiang, F., Shen, D.: Clusterseg: A crowd cluster pinpointed nucleus segmentation framework with cross-modality datasets. Medical Image Analysis (2023)

    Google Scholar 

  13. Kingma, D.P., Welling, M.: An introduction to variational autoencoders. Foundations and Trends in Machine Learning (2019)

    Google Scholar 

  14. Litjens, G., Bandi, P., Ehteshami Bejnordi, B., Geessink, O., Balkenhol, M., Bult, P., Halilovic, A., Hermsen, M., van de Loo, R., Vogels, R., et al.: 1399 h &e-stained sentinel lymph node sections of breast cancer patients: the camelyon dataset. GigaScience (2018)

    Google Scholar 

  15. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  16. von Platen, P., Patil, S., Lozhkov, A., Cuenca, P., Lambert, N., Rasul, K., Davaadorj, M., Wolf, T.: Diffusers: State-of-the-art diffusion models (2022)

    Google Scholar 

  17. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. CVPR (2022)

    Google Scholar 

  18. Seoane, J., Varela-Centelles, P., RamĂ­rez, J., Cameselle-Teijeiro, J., Romero, M.: Artefacts in oral incisional biopsies in general dental practice: a pathology audit. Oral diseases (2004)

    Google Scholar 

  19. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. In: ICLR (2021)

    Google Scholar 

  20. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural networks. ICML (2020)

    Google Scholar 

  21. Taqi, S.A., Sami, S.A., Sami, L.B., Zaki, S.A.: A review of artifacts in histopathology. Journal of oral and maxillofacial pathology: JOMFP (2018)

    Google Scholar 

  22. Verma, R., etc.: Monusac2020: A multi-organ nuclei segmentation and classification challenge. IEEE Transactions on Medical Imaging (2021)

    Google Scholar 

  23. Wang, C.Y., Mark Liao, H.Y., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: Cspnet: A new backbone that can enhance learning capability of cnn. In: CVPR Workshops (2020)

    Google Scholar 

  24. Wang, N.C., Kaplan, J., Lee, J., Hodgin, J., Udager, A., Rao, A.: Stress testing pathology models with generated artifacts. Journal of Pathology Informatics (2021)

    Google Scholar 

  25. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE TIP (2004)

    Google Scholar 

  26. Zhang, L., Zhang, L., Mou, X., Zhang, D.: Fsim: A feature similarity index for image quality assessment. IEEE TIP (2011)

    Google Scholar 

  27. Zhang, Y., Sun, Y., Li, H., Zheng, S., Zhu, C., Yang, L.: Benchmarking the robustness of deep neural networks to common corruptions in digital pathology. In: MICCAI. Springer (2022)

    Google Scholar 

  28. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networkss. ICCV (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Han .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Z., Liu, W., Yin, M., Han, K. (2025). LatentArtiFusion: An Effective and Efficient Histological Artifacts Restoration Framework. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Mehrof, D., Yuan, Y. (eds) Deep Generative Models. DGM4MICCAI 2024. Lecture Notes in Computer Science, vol 15224. Springer, Cham. https://doi.org/10.1007/978-3-031-72744-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72744-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72743-6

  • Online ISBN: 978-3-031-72744-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics