Skip to main content

Energy-Based Prior Latent Space Diffusion Model for Reconstruction of Lumbar Vertebrae from Thick Slice MRI

  • Conference paper
  • First Online:
Deep Generative Models (DGM4MICCAI 2024)

Abstract

Lumbar spine problems are ubiquitous, motivating research into targeted imaging for treatment planning and guided interventions. While the high resolution and high contrast CT has been the modality of choice, MRI can capture both bone and soft tissue without the ionizing radiation of CT albeit longer acquisition time. The critical tradeoff between contrast quality and acquisition time has motivated ‘thick slice MRI’, which prioritises faster imaging with high in-plane resolution but variable contrast and low through-plane resolution. We investigate a recently developed post-acquisition pipeline which segments vertebrae from thick-slice acquisitions and uses a variational autoencoder to enhance quality after an initial 3D reconstruction. We instead propose a latent space diffusion energy-based prior (The code for this work is available at https://github.com/Seven-year-promise/LSD_EBM_MRI.)  to leverage diffusion models, which exhibit high-quality image generation. Crucially, we mitigate their high computational cost and low sample efficiency by learning an energy-based latent representation to perform the diffusion processes. Our resulting method outperforms existing approaches across metrics including Dice and VS scores, and more faithfully captures 3D features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for boltzmann machines. Cognitive Science 9(1), 147–169 (1985). https://doi.org/10.1016/S0364-0213(85)80012-4, https://www.sciencedirect.com/science/article/pii/S0364021385800124

  2. Amiranashvili, T., Lüdke, D., Li, H.B., Menze, B., Zachow, S.: Learning shape reconstruction from sparse measurements with neural implicit functions. In: International Conference on Medical Imaging with Deep Learning. pp. 22–34. PMLR (2022)

    Google Scholar 

  3. Bajger, M., To, M.S., Lee, G., Wells, A., Chong, C., Agzarian, M., Poonnoose, S.: Lumbar spine CT synthesis from MR images using CycleGAN-a preliminary study. In: Digital Image Computing: Techniques and Applications (DICTA). pp. 1–8. IEEE (2021)

    Google Scholar 

  4. Been, E., Barash, A., Pessah, H., Peleg, S.: A new look at the geometry of the lumbar spine. Spine (Philadelphia, Pa. : 1986) 35(20), E1014–E1017 (2010)

    Google Scholar 

  5. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B., Varoquaux, G.: API design for machine learning software: Experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning. pp. 108–122 (2013)

    Google Scholar 

  6. Chai, Y., Xu, B., Zhang, K., Lepore, N., Wood, J.C.: MRI restoration using edge-guided adversarial learning. IEEE access : practical innovations, open solutions 8, 83858–83870 (2020)

    Article  Google Scholar 

  7. Du, Y., Mordatch, I.: Implicit generation and modeling with energy based models. In: Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  8. Flouris, K., Konukoglu, E.: Canonical normalizing flows for manifold learning. In: Oh, A., Neumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. (eds.) Advances in Neural Information Processing Systems. vol. 36, pp. 27294–27314. Curran Associates, Inc. (2023), https://proceedings.neurips.cc/paper_files/paper/2023/file/572a6f16ec44f794fb3e0f8a310acbc6-Paper-Conference.pdf

  9. Gao, R., Song, Y., Poole, B., Wu, Y.N., Kingma, D.P.: Learning energy-based models by diffusion recovery likelihood. arXiv preprint arXiv:2012.08125 (2020)

  10. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems 33, 6840–6851 (2020)

    Google Scholar 

  11. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79 8, 2554–8 (1982), https://api.semanticscholar.org/CorpusID:784288

  12. Hou, X., Sun, K., Shen, L., Qiu, G.: Improving variational autoencoder with deep feature consistent and generative adversarial training. Neurocomputing 341, 183–194 (May 2019https://doi.org/10.1016/j.neucom.2019.03.013

  13. Huang, S., Chen, G., Sun, K., Cui, Z., Zhang, X., Xue, P., Zhang, X., Zhang, H., Shen, D.: Super-resolution reconstruction of fetal brain MRI with prior anatomical knowledge. In: International Conference on Information Processing in Medical Imaging. pp. 428–441. Springer (2023)

    Google Scholar 

  14. Laakso, M.P., Juottonen, K., Partanen, K., Vainio, P., Soininen, H.: MRI volumetry of the hippocampus: The effect of slice thickness on volume formation. Magnetic resonance imaging 15(2), 263–265 (1997)

    Article  Google Scholar 

  15. Müller, D., Hartmann, D., Meyer, P., Auer, F., Soto-Rey, I., Kramer, F.: MISeval: A metric library for medical image segmentation evaluation. Challenges of trustable AI and added-value on health. proceedings of MIE (2022)

    Google Scholar 

  16. Odaibo, S.: Tutorial: Deriving the standard variational autoencoder (vae) loss function. arXiv preprint arXiv:1907.08956 (2019)

  17. Pang, B., Han, T., Nijkamp, E., Zhu, S.C., Wu, Y.N.: Learning latent space energy-based prior model. Advances in Neural Information Processing Systems 33, 21994–22008 (2020)

    Google Scholar 

  18. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning. pp. 2256–2265. PMLR (2015)

    Google Scholar 

  19. Sui, Y., Afacan, O., Jaimes, C., Gholipour, A., Warfield, S.K.: Scan-Specific generative neural network for MRI super-resolution reconstruction. IEEE Transactions on Medical Imaging 41(6), 1383–1399 (2022)

    Article  Google Scholar 

  20. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC medical imaging 15(1), 1–28 (2015)

    Article  Google Scholar 

  21. Turella, F., Bredell, G., Okupnik, A., Caprara, S., Graf, D., Sutter, R., Konukoglu, E.: High-resolution segmentation of lumbar vertebrae from conventional thick slice mri. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24. pp. 689–698. Springer (2021)

    Google Scholar 

  22. Turner, R.: (2005)

    Google Scholar 

  23. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dynamics. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11). pp. 681–688 (2011)

    Google Scholar 

  24. Wu, A., March, L., Zheng, X., Huang, J., Wang, X., Zhao, J., Blyth, F.M., Smith, E., Buchbinder, R., Hoy, D.: Global low back pain prevalence and years lived with disability from 1990 to 2017: Estimates from the Global Burden of Disease Study 2017. Annals of Translational Medicine 8(6),  299 (Mar 2020https://doi.org/10.21037/atm.2020.02.175

  25. Yu, P., Xie, S., Ma, X., Jia, B., Pang, B., Gao, R., Zhu, Y., Zhu, S.C., Wu, YN.: Latent diffusion energy-based model for interpretable text modeling. In: International Conference on Machine Learning (ICML). (2022)

    Google Scholar 

  26. Zhao, C., Dewey, B.E., Pham, D.L., Calabresi, P.A., Reich, D.S., Prince, J.L.: SMORE: A self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning. IEEE transactions on medical imaging 40(3), 805–817 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanke Wang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4630 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Lee, Y.Y.R., Dolfini, A., Reischl, M., Konukoglu, E., Flouris, K. (2025). Energy-Based Prior Latent Space Diffusion Model for Reconstruction of Lumbar Vertebrae from Thick Slice MRI. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Mehrof, D., Yuan, Y. (eds) Deep Generative Models. DGM4MICCAI 2024. Lecture Notes in Computer Science, vol 15224. Springer, Cham. https://doi.org/10.1007/978-3-031-72744-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72744-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72743-6

  • Online ISBN: 978-3-031-72744-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics