Skip to main content

Enhancing Cross-Modal Medical Image Segmentation Through Compositionality

  • Conference paper
  • First Online:
Deep Generative Models (DGM4MICCAI 2024)

Abstract

Cross-modal medical image segmentation presents a significant challenge, as different imaging modalities produce images with varying resolutions, contrasts, and appearances of anatomical structures. We introduce compositionality as an inductive bias in a cross-modal segmentation network to improve segmentation performance and interpretability while reducing complexity. The proposed network is an end-to-end cross-modal segmentation framework that enforces compositionality on the learned representations using learnable von Mises-Fisher kernels. These kernels facilitate content-style disentanglement in the learned representations, resulting in compositional content representations that are inherently interpretable and effectively disentangle different anatomical structures. The experimental results demonstrate enhanced segmentation performance and reduced computational costs on multiple medical datasets. Additionally, we demonstrate the interpretability of the learned compositional features. Code and checkpoints will be publicly available at: https://github.com/Trustworthy-AI-UU-NKI/Cross-Modal-Segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/FupingWu90/CT_MR_2D_Dataset_DA.

References

  1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  2. Chen, J., Zhang, Z., Xie, X., Li, Y., Xu, T., Ma, K., Zheng, Y.: Beyond mutual information: Generative adversarial network for domain adaptation using information bottleneck constraint. IEEE Transactions on Medical Imaging 41(3), 595–607 (2021)

    Article  Google Scholar 

  3. Chen, X., Lian, C., Wang, L., Deng, H., Kuang, T., Fung, S.H., Gateno, J., Shen, D., Xia, J.J., Yap, P.T.: Diverse data augmentation for learning image segmentation with cross-modality annotations. Medical image analysis 71, 102060 (2021)

    Article  Google Scholar 

  4. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2414–2423 (2016)

    Google Scholar 

  5. Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., Lerchner, A.: Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230 (2018)

  6. Kavur, A.E., Gezer, N.S., Barış, M., Aslan, S., Conze, P.H., Groza, V., Pham, D.D., Chatterjee, S., Ernst, P., Özkan, S., Baydar, B., Lachinov, D., Han, S., Pauli, J., Isensee, F., Perkonigg, M., Sathish, R., Rajan, R., Sheet, D., Dovletov, G., Speck, O., Nürnberger, A., Maier-Hein, K.H., Bozdaǧı Akar, G., Ünal, G., Dicle, O., Selver, M.A.: CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation. Medical Image Analysis 69, 101950 (Apr 2021). https://doi.org/10.1016/j.media.2020.101950, http://www.sciencedirect.com/science/article/pii/S1361841520303145

  7. Kavur, A.E., Selver, M.A., Dicle, O., Barış, M., Gezer, N.S.: CHAOS - Combined (CT-MR) Healthy Abdominal Organ Segmentation Challenge Data (Apr 2019). https://doi.org/10.5281/zenodo.3362844, https://doi.org/10.5281/zenodo.3362844

  8. Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual u-net. In: Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges: 9th International Workshop, STACOM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers 9. pp. 371–380. Springer (2019)

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Kortylewski, A., He, J., Liu, Q., Yuille, A.L.: Compositional convolutional neural networks: A deep architecture with innate robustness to partial occlusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8940–8949 (2020)

    Google Scholar 

  11. Lee, H.Y., Tseng, H.Y., Mao, Q., Huang, J.B., Lu, Y.D., Singh, M., Yang, M.H.: Drit++: Diverse image-to-image translation via disentangled representations. International Journal of Computer Vision 128, 2402–2417 (2020)

    Article  Google Scholar 

  12. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  13. Liu, X., Sanchez, P., Thermos, S., O’Neil, A.Q., Tsaftaris, S.A.: Learning disentangled representations in the imaging domain. Medical Image Analysis 80, 102516 (2022)

    Article  Google Scholar 

  14. Liu, X., Thermos, S., Sanchez, P., O’Neil, A.Q., Tsaftaris, S.A.: vmfnet: Compositionality meets domain-generalised segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 704–714. Springer (2022)

    Google Scholar 

  15. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE international conference on computer vision. pp. 2794–2802 (2017)

    Google Scholar 

  16. Ouyang, J., Adeli, E., Pohl, K.M., Zhao, Q., Zaharchuk, G.: Representation disentanglement for multi-modal brain mri analysis. In: Information Processing in Medical Imaging: 27th International Conference, IPMI 2021, Virtual Event, June 28–June 30, 2021, Proceedings 27. pp. 321–333. Springer (2021)

    Google Scholar 

  17. Pei, C., Wu, F., Huang, L., Zhuang, X.: Disentangle domain features for cross-modality cardiac image segmentation. Medical Image Analysis 71, 102078 (2021)

    Article  Google Scholar 

  18. Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset shift in machine learning. Mit Press (2008)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. pp. 234–241. Springer (2015)

    Google Scholar 

  20. Stone, A., Wang, H., Stark, M., Liu, Y., Scott Phoenix, D., George, D.: Teaching compositionality to cnns. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 5058–5067 (2017)

    Google Scholar 

  21. Tokmakov, P., Wang, Y.X., Hebert, M.: Learning compositional representations for few-shot recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 6372–6381 (2019)

    Google Scholar 

  22. Wang, R., Zheng, G.: Unsupervised cross-modality cardiac image segmentation via disentangled representation learning and consistency regularization. In: Machine Learning in Medical Imaging: 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 12. pp. 517–526. Springer (2021)

    Google Scholar 

  23. Wang, R., Zheng, G.: Cycmis: Cycle-consistent cross-domain medical image segmentation via diverse image augmentation. Medical Image Analysis 76, 102328 (2022)

    Article  Google Scholar 

  24. Wang, X., Chen, H., Tang, S., Wu, Z., Zhu, W.: Disentangled representation learning. arXiv preprint arXiv:2211.11695 (2022)

  25. Wu, F., Zhuang, X.: Cf distance: a new domain discrepancy metric and application to explicit domain adaptation for cross-modality cardiac image segmentation. IEEE Transactions on Medical Imaging 39(12), 4274–4285 (2020)

    Article  Google Scholar 

  26. Xie, Q., Li, Y., He, N., Ning, M., Ma, K., Wang, G., Lian, Y., Zheng, Y.: Unsupervised domain adaptation for medical image segmentation by disentanglement learning and self-training. IEEE Transactions on Medical Imaging (2022)

    Google Scholar 

  27. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 586–595 (2018)

    Google Scholar 

  28. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision. pp. 2223–2232 (2017)

    Google Scholar 

  29. Zhuang, X., Li, L., Payer, C., Å tern, D., Urschler, M., Heinrich, M.P., Oster, J., Wang, C., Smedby, Ö., Bian, C., et al.: Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge. Medical image analysis 58, 101537 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

Research at the Netherlands Cancer Institute is supported by grants from the Dutch Cancer Society and the Dutch Ministry of Health, Welfare and Sport. The authors would like to acknowledge the Research High Performance Computing (RHPC) facility of the Netherlands Cancer Institute (NKI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniek Eijpe .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4229 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eijpe, A., Corbetta, V., Chupetlovska, K., Beets-Tan, R., Silva, W. (2025). Enhancing Cross-Modal Medical Image Segmentation Through Compositionality. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Mehrof, D., Yuan, Y. (eds) Deep Generative Models. DGM4MICCAI 2024. Lecture Notes in Computer Science, vol 15224. Springer, Cham. https://doi.org/10.1007/978-3-031-72744-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72744-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72743-6

  • Online ISBN: 978-3-031-72744-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics