Abstract
Implicit scene representation has attracted a lot of attention in recent research of computer vision and graphics. Most prior methods focus on how to reconstruct 3D scene representation from a set of images. In this work, we demonstrate the possibility to recover the neural radiance fields (NeRF) from a single blurry image and its corresponding event stream. To eliminate motion blur, we introduce event stream to regularize the learning process of NeRF by accumulating it into an image. We model the camera motion with a cubic B-Spline in SE(3) space. Both the blurry image and the brightness change within a time interval, can then be synthesized from the NeRF given the 6-DoF poses interpolated from the cubic B-Spline. Our method can jointly learn both the implicit scene representation and the camera motion by minimizing the differences between the synthesized data and the real measurements without any prior knowledge of camera poses. We evaluate the proposed method with both synthetic and real datasets. The experimental results demonstrate that we are able to render view-consistent latent sharp images from the learned NeRF and bring a blurry image alive in high quality.
Wenpu Li, Pian Wan, Peng Wang: Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Unreal Engine: The most powerful real-time 3D creation tool. https://www.unrealengine.com/en-US/
Bian, W., Wang, Z., Li, K., Bian, J., Prisacariu, V.A.: NoPe-NeRF: optimising neural radiance field with no pose prior. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2023)
Cai, S., Obukhov, A., Dai, D., Van Gool, L.: Pix2NeRF: unsupervised conditional pi-GAN for single image to neural radiance fields translation. In: CVPR (2022)
Chen, L., Chu, X., Zhang, X., Sun, J.: Simple Baselines for Image Restoration. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022, pp. 17–33. Lecture Notes in Computer Science, Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-20071-7_2
Chen, L., Lu, X., Zhang, J., Chu, X., Chen, C.: HINet: half instance normalization network for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 182–192 (2021)
Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised nerf: Fewer views and faster training for free. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12882–12891 (2022)
Foundation, B.: Blender.org - Home of the Blender project - Free and Open 3D Creation Software.
Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 154–180 (2022). https://doi.org/10.1109/TPAMI.2020.3008413
Hidalgo-Carrió, J., Gallego, G., Scaramuzza, D.: Event-aided Direct Sparse Odometry (2022). https://doi.org/10.48550/arXiv.2204.07640
Hwang, I., Kim, J., Kim, Y.M.: EV-nerf: event based neural radiance field. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 837–847 (2023)
Jia, J.: Single image motion deblurring using transparency. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
Jiang, Z., Zhang, Y., Zou, D., Ren, J., Lv, J., Liu, Y.: Learning Event-Based Motion Deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3320–3329 (2020)
Jin, M., Meishvili, G., Favaro, P.: Learning to extract a video sequence from a single motion-blurred image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6334–6342 (2018)
Joshi, N., Zitnick, C.L., Szeliski, R., Kriegman, D.J.: Image deblurring and denoising using color priors. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1550–1557. IEEE (2009)
Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980
Klenk, S., Koestler, L., Scaramuzza, D., Cremers, D.: E-nerf: neural radiance fields from a moving event camera. IEEE Robot. Auto. Lett. (2023)
Klenk, S., Koestler, L., Scaramuzza, D., Cremers, D.: E-NeRF: neural radiance fields from a moving event camera. IEEE Robot. Auto. Lett. 8(3), 1587–1594 (2023). https://doi.org/10.1109/LRA.2023.3240646
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: Blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 8183–8192 (2018)
Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8878–8887 (2019)
Lee, D., Oh, J., Rim, J., Cho, S., Lee, K.M.: Exblurf: efficient radiance fields for extreme motion blurred images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2023)
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964–1971. IEEE (2009)
Li, M., Wang, P., Zhao, L., Liao, B., Liu, P.: USB-NeRF: unrolling shutter bundle adjusted neural radiance fields. In: International Conference on Learning Representations (ICLR) (2024)
Lichtsteiner, P., Posch, C., Delbruck, T.: A 128\({\backslash }{\rm times}\)128 120 dB 15 \(M\)s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43(2), 566–576 (2008). https://doi.org/10.1109/JSSC.2007.914337
Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5741–5751 (2021)
Low, W.F., Lee, G.H.: Robust e-nerf: nerf from sparse and noisy events under non-uniform motion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2023)
Ma, L., et al.: Deblur-NeRF: neural radiance fields from blurry images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12861–12870 (2022)
Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P.P., Barron, J.T.: NeRF in the dark: High dynamic range view synthesis from noisy raw images. CVPR (2022)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis (2020). https://doi.org/10.48550/arXiv.2003.08934
Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 1–15 (2022). https://doi.org/10.1145/3528223.3530127
Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)
Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S., Geiger, A., Radwan, N.: Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5480–5490 (2022)
Pan, L., Scheerlinck, C., Yu, X., Hartley, R., Liu, M., Dai, Y.: Bringing a blurry frame alive at high frame-rate with an event camera. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6820–6829 (2019)
Qi, Y., Zhu, L., Zhang, Y., Li, J.: E2NeRF: event enhanced neural radiance fields from blurry images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13254–13264 (2023)
Qin, K.: General matrix representations for B-splines. In: Proceedings Pacific Graphics ’98. Sixth Pacific Conference on Computer Graphics and Applications (Cat. No.98EX208), pp. 37–43 (1998). https://doi.org/10.1109/PCCGA.1998.731996
Rebain, D., Matthews, M., Yi, K.M., Lagun, D., Tagliasacchi, A.: LOLNeRF: Learn from One Look. In: CVPR (2022)
Rebecq, H., Gehrig, D., Scaramuzza, D.: ESIM: an open event camera simulator. In: Proceedings of The 2nd Conference on Robot Learning, pp. 969–982. PMLR (Oct 2018)
Rematas, K., Martin-Brualla, R., Ferrari, V.: ShaRF: shape-conditioned radiance fields from a single view. In: ICML (2021)
Rudnev, V., Elgharib, M., Theobalt, C., Golyanik, V.: EventNeRF: neural radiance fields from a single colour event camera. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4992–5002 (2023)
Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Schops, T., Sattler, T., Pollefeys, M.: BAD SLAM: bundle adjusted direct RGB-D SLAM. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 134–144 (2019)
Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. (tog) 27(3), 1–10 (2008)
Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 769–777 (2015)
Sun, L., et al.: Event-based fusion for motion deblurring with cross-modal attention. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022, pp. 412–428. Lecture Notes in Computer Science, Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-19797-0_24
Sun, L., et al.: Event-based frame interpolation with ad-hoc deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18043–18052 (2023)
Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)
Wang, B., He, J., Yu, L., Xia, G.S., Yang, W.: Event enhanced high-quality image recovery. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision – ECCV 2020, pp. 155–171. Lecture Notes in Computer Science, Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_10
Wang, P., Zhao, L., Ma, R., Liu, P.: BAD-NeRF: bundle adjusted deblur neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4170–4179 (2023)
Wang, Z., Wu, S., Xie, W., Chen, M., Prisacariu, V.A.: NeRF–: neural radiance fields without known camera parameters (2022). https://doi.org/10.48550/arXiv.2102.07064
Xu, F., et al.: Motion deblurring with real events. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2583–2592 (2021)
Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part I 11, pp. 157–170. Springer (2010). https://doi.org/10.1007/978-3-642-15549-9_12
Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5752–5761 (2021)
Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelnerf: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2021)
Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5728–5739 (2022)
Zamir, S.W., et al.: Multi-stage progressive image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14821–14831 (2021)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)
Zhang, X., Yu, L., Yang, W., Liu, J., Xia, G.S.: Generalizing event-based motion deblurring in real-world scenarios. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10734–10744 (2023)
Zhao, L., Wang, P., Liu, P.: BAD-Gaussians: bundle adjusted deblur gaussian splatting. In: European Conference on Computer Vision (ECCV). Springer (2024)
Acknowledgements
This work was supported in part by NSFC under Grant 62202389, in part by a grant from the Westlake University-Muyuan Joint Research Institute, and in part by the Westlake Education Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, W., Wan, P., Wang, P., Li, J., Zhou, Y., Liu, P. (2025). BeNeRF: Neural Radiance Fields from a Single Blurry Image and Event Stream. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15089. Springer, Cham. https://doi.org/10.1007/978-3-031-72751-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-72751-1_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72750-4
Online ISBN: 978-3-031-72751-1
eBook Packages: Computer ScienceComputer Science (R0)