Skip to main content

Efficient Active Domain Adaptation for Semantic Segmentation by Selecting Information-Rich Superpixels

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15092))

Included in the following conference series:

  • 112 Accesses

Abstract

Unsupervised Domain Adaptation (UDA) for semantic segmentation has been widely studied to exploit the label-rich source data to assist the segmentation of unlabeled samples on target domain. Despite these efforts, UDA performance remains far below that of fully-supervised model owing to the lack of target annotations. To this end, we propose an efficient superpixel-level active learning method for domain adaptive semantic segmentation to maximize segmentation performance by automatically querying a small number of superpixels for labeling. To conserve annotation resources, we propose a novel low-uncertainty superpixel fusion module which amalgamates superpixels possessing low-uncertainty features based on feature affinity and thereby ensuring high-quality fusion of superpixels. As for the acquisition strategy, our method takes into account two types of information-rich superpixels: large-size superpixels with substantial information content, and superpixels with the greatest value for domain adaptation learning. Further, we employ the cross-domain mixing and pseudo label with consistency regularization techniques respectively to address the domain shift and label noise problems. Extensive experimentation demonstrates that our proposed superpixel-level method utilizes a limited budget more efficiently than previous pixel-level techniques and surpasses state-of-the-art methods at 40x lower cost. Our code is available at https://github.com/EdenHazardan/ADA_superpixel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. TPAMI (2012)

    Google Scholar 

  2. Van den Bergh, M., Boix, X., Roig, G., De Capitani, B., Van Gool, L.: Seeds: superpixels extracted via energy-driven sampling. In: ECCV (2012)

    Google Scholar 

  3. Cai, L., Xu, X., Liew, J.H., Foo, C.S.: Revisiting superpixels for active learning in semantic segmentation with realistic annotation costs. In: CVPR (2021)

    Google Scholar 

  4. Casanova, A., Pinheiro, P.O., Rostamzadeh, N., Pal, C.J.: Reinforced active learning for image segmentation. arXiv preprint arXiv:2002.06583 (2020)

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI (2017)

    Google Scholar 

  6. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV (2018)

    Google Scholar 

  7. Chen, L., Wei, Z., Jin, X., Chen, H., Zheng, M., Chen, K., Jin, Y.: Deliberated domain bridging for domain adaptive semantic segmentation. NeurIPS (2022)

    Google Scholar 

  8. Cheng, Y., Wei, F., Bao, J., Chen, D., Wen, F., Zhang, W.: Dual path learning for domain adaptation of semantic segmentation. In: ICCV (2021)

    Google Scholar 

  9. Colling, P., Roese-Koerner, L., Gottschalk, H., Rottmann, M.: Metabox+: A new region based active learning method for semantic segmentation using priority maps. arXiv preprint arXiv:2010.01884 (2020)

  10. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  11. Culotta, A., McCallum, A.: Reducing labeling effort for structured prediction tasks. In: AAAI (2005)

    Google Scholar 

  12. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. IJCV (2010)

    Google Scholar 

  13. Gao, Y., Wang, Z., Zhuang, J., Zhang, Y., Li, J.: Exploit domain-robust optical flow in domain adaptive video semantic segmentation. In: AAAI (2023)

    Google Scholar 

  14. Hoyer, L., Dai, D., Van Gool, L.: Daformer: Improving network architectures and training strategies for domain-adaptive semantic segmentation. In: CVPR (2022)

    Google Scholar 

  15. Jampani, V., Sun, D., Liu, M.Y., Yang, M.H., Kautz, J.: Superpixel sampling networks. In: ECCV (2018)

    Google Scholar 

  16. Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: CVPR. IEEE (2009)

    Google Scholar 

  17. Kim, H., Oh, M., Hwang, S., Kwak, S., Ok, J.: Adaptive superpixel for active learning in semantic segmentation. In: ICCV (2023)

    Google Scholar 

  18. Koh, K.B., Fernando, B.: Consistency regularization for domain adaptation. In: ECCV (2022)

    Google Scholar 

  19. Lee, S., Choi, W., Kim, C., Choi, M., Im, S.: Adas: a direct adaptation strategy for multi-target domain adaptive semantic segmentation. In: CVPR (2022)

    Google Scholar 

  20. Li, J., Wang, Z., Gao, Y., Hu, X.: Exploring high-quality target domain information for unsupervised domain adaptive semantic segmentation. In: ACM MM (2022)

    Google Scholar 

  21. Li, Z., Chen, J.: Superpixel segmentation using linear spectral clustering. In: CVPR (2015)

    Google Scholar 

  22. Lin, T.Y., et al.: Microsoft coco: common objects in context. In: ECCV (2014)

    Google Scholar 

  23. Liu, Y., Deng, J., Gao, X., Li, W., Duan, L.: Bapa-net: boundary adaptation and prototype alignment for cross-domain semantic segmentation. In: ICCV (2021)

    Google Scholar 

  24. Mackowiak, R., Lenz, P., Ghori, O., Diego, F., Lange, O., Rother, C.: Cereals-cost-effective region-based active learning for semantic segmentation. arXiv preprint arXiv:1810.09726 (2018)

  25. Mei, K., Zhu, C., Zou, J., Zhang, S.: Instance adaptive self-training for unsupervised domain adaptation. In: ECCV (2020)

    Google Scholar 

  26. Melas-Kyriazi, L., Manrai, A.K.: Pixmatch: unsupervised domain adaptation via pixelwise consistency training. In: CVPR (2021)

    Google Scholar 

  27. Milioto, A., Stachniss, C.: Bonnet: An open-source training and deployment framework for semantic segmentation in robotics using CNNs. In: ICRA (2019)

    Google Scholar 

  28. Ning, M., et al.: Multi-anchor active domain adaptation for semantic segmentation. In: ICCV (2021)

    Google Scholar 

  29. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: ECCV. Springer (2016). https://doi.org/10.1007/978-3-319-46475-6_7

  30. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: CVPR (2016)

    Google Scholar 

  31. Shin, I., Kim, D.J., Cho, J.W., Woo, S., Park, K., Kweon, I.S.: Labor: labeling only if required for domain adaptive semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8588–8598 (2021)

    Google Scholar 

  32. Siam, M., Gamal, M., Abdel-Razek, M., Yogamani, S., Jagersand, M., Zhang, H.: A comparative study of real-time semantic segmentation for autonomous driving. In: CVPR workshops (2018)

    Google Scholar 

  33. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. NeurIPS (2020)

    Google Scholar 

  34. Sumithra, R., Suhil, M., Guru, D.: Segmentation and classification of skin lesions for disease diagnosis. Procedia Comput. Sci. (2015)

    Google Scholar 

  35. Tranheden, W., Olsson, V., Pinto, J., Svensson, L.: Dacs: domain adaptation via cross-domain mixed sampling. In: WACV (2021)

    Google Scholar 

  36. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR (2019)

    Google Scholar 

  37. Wang, D., Shang, Y.: A new active labeling method for deep learning. In: 2014 International joint conference on neural networks (IJCNN). IEEE (2014)

    Google Scholar 

  38. Wang, Q., Dai, D., Hoyer, L., Van Gool, L., Fink, O.: Domain adaptive semantic segmentation with self-supervised depth estimation. In: ICCV (2021)

    Google Scholar 

  39. Wu, T.H., et al.: D 2 ada: dynamic density-aware active domain adaptation for semantic segmentation. In: ECCV (2022)

    Google Scholar 

  40. Xie, B., Yuan, L., Li, S., Liu, C.H., Cheng, X.: Towards fewer annotations: active learning via region impurity and prediction uncertainty for domain adaptive semantic segmentation. In: CVPR (2022)

    Google Scholar 

  41. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. NeurIPS (2021)

    Google Scholar 

  42. Yang, F., Sun, Q., Jin, H., Zhou, Z.: Superpixel segmentation with fully convolutional networks. In: CVPR (2020)

    Google Scholar 

  43. Yang, L., Zhuo, W., Qi, L., Shi, Y., Gao, Y.: St++: make self-training work better for semi-supervised semantic segmentation. In: CVPR (2022)

    Google Scholar 

  44. You, F., Li, J., Chen, Z., Zhu, L.: Pixel exclusion: uncertainty-aware boundary discovery for active cross-domain semantic segmentation. In: ACM MM (2022)

    Google Scholar 

  45. Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In: CVPR (2021)

    Google Scholar 

  46. Zhang, Y., Wang, Z.: Joint adversarial learning for domain adaptation in semantic segmentation. In: AAAI (2020)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant 62176246. This work is also supported by Anhui Province Key Research and Development Plan (202304a05020045) and Anhui Province Natural Science Foundation (2208085UD17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, Y., Wang, Z., Zhang, Y., Tu, B. (2025). Efficient Active Domain Adaptation for Semantic Segmentation by Selecting Information-Rich Superpixels. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15092. Springer, Cham. https://doi.org/10.1007/978-3-031-72754-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72754-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72753-5

  • Online ISBN: 978-3-031-72754-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics