Abstract
In this paper, we propose a novel rolling shutter bundle adjustment method for neural radiance fields (NeRF), which utilizes the unordered rolling shutter (RS) images to obtain the implicit 3D representation. Existing NeRF methods suffer from low-quality images and inaccurate initial camera poses due to the RS effect in the image. Furthermore, the previous method that incorporates RS images into NeRF requires strict sequential data input, thus limiting its widespread applicability. In contrast, our method recovers the physical formation of RS images by estimating camera poses and velocities, thereby removing the input constraints on sequential data. Moreover, we adopt a coarse-to-fine training strategy, in which the RS epipolar constraints of the pairwise frames in the scene graph are used to detect the camera poses that fall into local minima. The poses detected as outliers are corrected by the interpolation method with neighboring poses. The experimental results validate the effectiveness of our method over state-of-the-art works and demonstrate that the reconstruction of 3D representations is not constrained by the requirement of video sequence input.
The work was done while Bo Xu is a visiting student at the National University of Singapore.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albl, C., Sugimoto, A., Pajdla, T.: Degeneracies in rolling shutter SfM. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 36–51. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_3
Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: MIP-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864 (2021)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: MIP-NeRF 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-NeRF: anti-aliased grid-based neural radiance fields. arXiv preprint arXiv:2304.06706 (2023)
Cao, L., Ling, J., Xiao, X.: The WHU rolling shutter visual-inertial dataset. IEEE Access 8, 50771–50779 (2020)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20
Chen, Y., Lee, G.H.: DBARF: deep bundle-adjusting generalizable neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24–34 (2023)
Dai, Y., Li, H., Kneip, L.: Rolling shutter camera relative pose: generalized epipolar geometry. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4132–4140 (2016)
DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 224–236 (2018)
Dollár, P., Welinder, P., Perona, P.: Cascaded pose regression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1078–1085. IEEE (2010)
Fan, B., Dai, Y., He, M.: Sunet: symmetric undistortion network for rolling shutter correction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4541–4550 (2021)
Fan, B., Dai, Y., Zhang, Z., Liu, Q., He, M.: Context-aware video reconstruction for rolling shutter cameras. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17572–17582 (2022)
Fu, H., Yu, X., Li, L., Zhang, L.: CBARF: cascaded bundle-adjusting neural radiance fields from imperfect camera poses. arXiv preprint arXiv:2310.09776 (2023)
Hedborg, J., Forssén, P.E., Felsberg, M., Ringaby, E.: Rolling shutter bundle adjustment. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1434–1441. IEEE (2012)
Hu, W., et al.: Tri-MipRF: Tri-Mip representation for efficient anti-aliasing neural radiance fields. In: ICCV (2023)
Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)
Im, S., Ha, H., Choe, G., Jeon, H.G., Joo, K., Kweon, I.S.: Accurate 3D reconstruction from small motion clip for rolling shutter cameras. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 775–787 (2018)
Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2146–2153. IEEE (2009)
Jinyu, L., Bangbang, Y., Danpeng, C., Nan, W., Guofeng, Z., Hujun, B.: Survey and evaluation of monocular visual-inertial slam algorithms for augmented reality. Virtual Reality Intell. Hardware 1(4), 386–410 (2019)
Lao, Y., Ait-Aider, O., Araujo, H.: Robustified structure from motion with rolling-shutter camera using straightness constraint. Pattern Recogn. Lett. 111, 1–8 (2018)
Lao, Y., Ait-Aider, O., Bartoli, A.: Solving rolling shutter 3D vision problems using analogies with non-rigidity. Int. J. Comput. Vis. 129, 100–122 (2021)
Li, M., Wang, P., Zhao, L., Liao, B., Liu, P.: USB-NeRF: unrolling shutter bundle adjusted neural radiance fields. arXiv preprint arXiv:2310.02687 (2023)
Liao, B., Qu, D., Xue, Y., Zhang, H., Lao, Y.: Revisiting rolling shutter bundle adjustment: toward accurate and fast solution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4863–4871 (2023)
Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5741–5751 (2021)
Meingast, M., Geyer, C., Sastry, S.: Geometric models of rolling-shutter cameras. arXiv preprint cs/0503076 (2005)
Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1–102:15 (2022). https://doi.org/10.1145/3528223.3530127
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)
Patron-Perez, A., Lovegrove, S., Sibley, G.: A spline-based trajectory representation for sensor fusion and rolling shutter cameras. Int. J. Comput. Vis. 113(3), 208–219 (2015)
Rengarajan, V., Balaji, Y., Rajagopalan, A.: Unrolling the shutter: CNN to correct motion distortions. In: Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, pp. 2291–2299 (2017)
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4938–4947 (2020)
Saurer, O., Pollefeys, M., Lee, G.H.: Sparse to dense 3D reconstruction from rolling shutter images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3337–3345 (2016)
Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Song, L., Wang, G., Liu, J., Fu, Z., Miao, Y., et al.: SC-NeRF: self-correcting neural radiance field with sparse views. arXiv preprint arXiv:2309.05028 (2023)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5752–5761 (2021)
Zamir, S.W., et al.: Multi-stage progressive image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14821–14831 (2021)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)
Zhuang, B., Cheong, L.F., Hee Lee, G.: Rolling-shutter-aware differential SFM and image rectification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 948–956 (2017)
Acknowledgement
This research/project is supported by the National Research Foundation, Singapore, under its NRF-Investigatorship Programme (Award ID. NRF-NRFI09-0008), the Tier 2 grant MOE-T2EP20120-0011 from the Singapore Ministry of Education, and the National Key Research and Development Program of China (2021YFB2501100).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, B., Liu, Z., Guo, M., Li, J., Lee, G.H. (2025). URS-NeRF: Unordered Rolling Shutter Bundle Adjustment for Neural Radiance Fields. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15093. Springer, Cham. https://doi.org/10.1007/978-3-031-72761-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-72761-0_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72760-3
Online ISBN: 978-3-031-72761-0
eBook Packages: Computer ScienceComputer Science (R0)