Abstract
Recent advances in Neural Fields mostly rely on developing task-specific supervision which often complicates the models. Rather than developing hard-to-combine and specific modules, another approach generally overlooked is to directly inject generic priors on the scene representation (also called inductive biases) into the NeRF architecture. Based on this idea, we propose the RING-NeRF architecture which includes two inductive biases: a continuous multi-scale representation of the scene and an invariance of the decoder’s latent space over spatial and scale domains. We also design a single reconstruction process that takes advantage of those inductive biases and experimentally demonstrates on-par performances in terms of quality with dedicated architecture on multiple tasks (anti-aliasing, few view reconstruction, SDF reconstruction without scene-specific initialization) while being more efficient. Moreover, RING-NeRF has the distinctive ability to dynamically increase the resolution of the model, opening the way to adaptive reconstruction. Project page can be found at: https://cea-list.github.io/RING-NeRF
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
With SDF, an additional Eikonal loss is also being optimized for SDF regularization.
- 2.
A virtual grid of LOD \(L \in \mathbb {R}^+\) corresponds to a grid of resolution \(f^Lb\) that is not explicitly stored in memory but whose elements can be computed from other grids.
References
Atzmon, M., Lipman, Y.: Sal: Sign agnostic learning of shapes from raw data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2565–2574 (2020)
Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-nerf: a multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864 (2021)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-nerf: anti-aliased grid-based neural radiance fields. In: ICCV (2023)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: tensorial radiance fields. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, vol. 13692, pp. 333–350. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19824-3_20
Dou, Y., Zheng, Z., Jin, Q., Ni, B.: Multiplicative fourier level of detail. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1808–1817 (2023)
Hu, W., et al.: Tri-miprf: Tri-mip representation for efficient anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19774–19783 (2023)
Jain, A., Tancik, M., Abbeel, P.: Putting nerf on a diet: semantically consistent few-shot view synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5885–5894 (2021)
Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 406–413 (2014)
Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. 36(4) (2017)
Li, Z., Müller, T., Evans, A., Taylor, R.H., Unberath, M., Liu, M.Y., Lin, C.H.: Neuralangelo: high-fidelity neural surface reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8456–8465 (2023)
Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. Adv. Neural. Inf. Process. Syst. 33, 15651–15663 (2020)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)
Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S., Geiger, A., Radwan, N.: Regnerf: regularizing neural radiance fields for view synthesis from sparse inputs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5480–5490 (2022)
Park, K., Henzler, P., Mildenhall, B., Barron, J.T., Martin-Brualla, R.: Camp: camera preconditioning for neural radiance fields. ACM Trans. Graph. (TOG) 42(6), 1–11 (2023)
Park, K., et al.: Nerfies: deformable neural radiance fields. In: ICCV (2021)
Straub, J., et al.: The replica dataset: a digital replica of indoor spaces. arXiv preprint arXiv:1906.05797 (2019)
Takikawa, T., et al.: Neural geometric level of detail: real-time rendering with implicit 3d shapes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11358–11367 (2021)
Tancik, M., et al.: Nerfstudio: a modular framework for neural radiance field development. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–12 (2023)
Turki, H., Zollhöfer, M., Richardt, C., Ramanan, D.: Pynerf: pyramidal neural radiance fields. In: Thirty-Seventh Conference on Neural Information Processing Systems (2023)
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: learning neural implicit surfaces by volume rendering for multi-view reconstruction. In: NeurIPS (2021)
Wynn, J., Turmukhambetov, D.: DiffusioNeRF: regularizing neural radiance fields with denoising diffusion models. In: CVPR (2023)
Xu, L., et al.: VR-NeRF: high-fidelity virtualized walkable spaces. In: SIGGRAPH Asia Conference Proceedings (2023). https://doi.org/10.1145/3610548.3618139
Yang, J., Pavone, M., Wang, Y.: Freenerf: improving few-shot neural rendering with free frequency regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8254–8263 (2023)
Yu, Z., et al.: Sdfstudio: a unified framework for surface reconstruction (2022). https://github.com/autonomousvision/sdfstudio
Yu, Z., Peng, S., Niemeyer, M., Sattler, T., Geiger, A.: Monosdf: exploring monocular geometric cues for neural implicit surface reconstruction. Adv. Neural. Inf. Process. Syst. 35, 25018–25032 (2022)
Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: analyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020)
Zhu, Z., et al.: Nice-slam: neural implicit scalable encoding for slam. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12786–12796 (2022)
Zhuang, Y., et al.: Anti-aliased neural implicit surfaces with encoding level of detail. In: Siggraph Asia 2023 (2023)
Acknowledgements
This publication was made possible by the use of the CEA List FactoryIA supercomputer, financially supported by the Ile-de-France Regional Council.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Petit, D., Bourgeois, S., Pavel, D., Gay-Bellile, V., Chabot, F., Barthe, L. (2025). RING-NeRF : Rethinking Inductive Biases for Versatile and Efficient Neural Fields. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15093. Springer, Cham. https://doi.org/10.1007/978-3-031-72761-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-72761-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72760-3
Online ISBN: 978-3-031-72761-0
eBook Packages: Computer ScienceComputer Science (R0)