Skip to main content

Revisiting Calibration of Wide-Angle Radially Symmetric Cameras

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Recent learning-based calibration methods yield promising results in estimating parameters for wide field-of-view cameras from single images. Yet, these end-to-end approaches are typically tethered to one fixed camera model, leading to issues: (i) lack of flexibility, necessitating network architectural changes and retraining when changing camera models; (ii) reduced accuracy, as a single model limits the diversity of cameras represented in the training data; (iii) restrictions in camera model selection, as learning-based methods need differentiable loss functions and, thus, undistortion equations with closed-form solutions. In response, we present a novel two-step calibration framework for radially symmetric cameras. Key to our approach is a specialized CNN that, given an input image, outputs an implicit camera representation (VaCR), mapping each image point to the direction of the 3D light ray projecting onto it. The VaCR is used in a subsequent robust non-linear optimization process to determine the camera parameters for any radially symmetric model provided as input. By disentangling the estimation of camera model parameters from the VaCR, which is based only on the assumption of radial symmetry in the model, we overcome the main limitations of end-to-end approaches. Experimental results demonstrate the advantages of the proposed framework compared to state-of-the-art methods. Code is at github.com/andreadalcin/RadiallySymmetricCalib.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Refer to SM 7 for details about ambiguities and visualizations for EUCM and DSCM.

  2. 2.

    The verification of the angle-invariance property depends on the adopted camera model; we provide a proof for the DSCM model in SM 8.

  3. 3.

    Refer to SM 9 for an ablation study on \(W_p\)’s effects on VaCR regression.

  4. 4.

    SM 9 analyzes the effects of different downsampling rates on calibration accuracy.

  5. 5.

    Refer to SM 10 for a detailed definition of error metrics.

References

  1. Alemán-Flores, M., Alvarez, L., Gomez, L., Santana-Cedrés, D.: Automatic lens distortion correction using one-parameter division models. Image Process. On Line 4, 327–343 (2014)

    Article  Google Scholar 

  2. Balntas, V.: SILDa: a multi-task dataset for evaluating visual localization. In: Medium (2019). https://medium.com/scape-technologies/silda-a-multi-task-dataset-for-evaluating-visual-localization-7fc6c2c56c74

  3. Benligiray, B., Topal, C.: Blind rectification of radial distortion by line straightness. In: 2016 24th European Signal Processing Conference (EUSIPCO), pp. 938–942. IEEE (2016)

    Google Scholar 

  4. Bogdan, O., Eckstein, V., Rameau, F., Bazin, J.C.: Deepcalib: a deep learning approach for automatic intrinsic calibration of wide field-of-view cameras. In: Proceedings of the 15th ACM SIGGRAPH European Conference on Visual Media Production, pp. 1–10 (2018)

    Google Scholar 

  5. Bukhari, F., Dailey, M.N.: Automatic radial distortion estimation from a single image. J. Math. Imaging Vision 45, 31–45 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chao, C.H., Hsu, P.L., Lee, H.Y., Wang, Y.C.F.: Self-supervised deep learning for fisheye image rectification. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2248–2252. IEEE (2020)

    Google Scholar 

  7. Chen, Y., Schmid, C., Sminchisescu, C.: Self-supervised learning with geometric constraints in monocular video: Connecting flow, depth, and camera. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7063–7072 (2019)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Feng, H., Wang, W., Deng, J., Zhou, W., Li, L., Li, H.: Simfir: a simple framework for fisheye image rectification with self-supervised representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12418–12427 (2023)

    Google Scholar 

  10. Geyer, C., Daniilidis, K.: A unifying theory for central panoramic systems and practical implications. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 445–461. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45053-X_29

    Chapter  Google Scholar 

  11. Gonzalez-Aguilera, D., Gomez-Lahoz, J., Rodríguez-Gonzálvez, P.: An automatic approach for radial lens distortion correction from a single image. IEEE Sens. J. 11(4), 956–965 (2010)

    Article  Google Scholar 

  12. Gordon, A., Li, H., Jonschkowski, R., Angelova, A.: Depth from videos in the wild: unsupervised monocular depth learning from unknown cameras. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8977–8986 (2019)

    Google Scholar 

  13. Hosono, M., Simo-Serra, E., Sonoda, T.: Self-supervised deep fisheye image rectification approach using coordinate relations. In: 2021 17th International Conference on Machine Vision and Applications (MVA). pp. 1–5. IEEE (2021)

    Google Scholar 

  14. Jin, L., et al.: Perspective fields for single image camera calibration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17307–17316 (2023)

    Google Scholar 

  15. Khomutenko, B., Garcia, G., Martinet, P.: An enhanced unified camera model. IEEE Robot. Automat. Lett. 1(1), 137–144 (2015)

    Article  Google Scholar 

  16. Li, X., Zhang, B., Sander, P.V., Liao, J.: Blind geometric distortion correction on images through deep learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4855–4864 (2019)

    Google Scholar 

  17. Liao, K., Lin, C., Liao, L., Zhao, Y., Lin, W.: Multi-level curriculum for training a distortion-aware barrel distortion rectification model. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4389–4398 (2021)

    Google Scholar 

  18. Liao, K., Lin, C., Wei, Y., Li, F., Yang, S., Zhao, Y.: Towards complete scene and regular shape for distortion rectification by curve-aware extrapolation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14569–14578 (2021)

    Google Scholar 

  19. Liao, K., Lin, C., Zhao, Y., Gabbouj, M.: Dr-gan: automatic radial distortion rectification using conditional GAN in real-time. IEEE Trans. Circuits Syst. Video Technol. 30(3), 725–733 (2019)

    Article  Google Scholar 

  20. Liao, K., Lin, C., Zhao, Y., Xu, M.: Model-free distortion rectification framework bridged by distortion distribution map. IEEE Trans. Image Process. 29, 3707–3718 (2020)

    Article  Google Scholar 

  21. Liao, Y., Xie, J., Geiger, A.: Kitti-360: a novel dataset and benchmarks for urban scene understanding in 2d and 3d. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 3292–3310 (2022)

    Article  Google Scholar 

  22. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  23. Lochman, Y., Dobosevych, O., Hryniv, R., Pritts, J.: Minimal solvers for single-view lens-distorted camera auto-calibration. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2887–2896 (2021)

    Google Scholar 

  24. Lopez, M., Mari, R., Gargallo, P., Kuang, Y., Gonzalez-Jimenez, J., Haro, G.: Deep single image camera calibration with radial distortion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11817–11825 (2019)

    Google Scholar 

  25. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  26. Mirowski, P., et al.: The street learn environment and dataset. arXiv preprint arXiv:1903.01292 (2019)

  27. Pritts, J., Kukelova, Z., Larsson, V., Chum, O.: Radially-distorted conjugate translations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1993–2001 (2018)

    Google Scholar 

  28. Ren, L., Song, Y., Lu, J., Zhou, J.: Spatial geometric reasoning for room layout estimation via deep reinforcement learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 550–565. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_33

    Chapter  Google Scholar 

  29. Rong, J., Huang, S., Shang, Z., Ying, X.: Radial lens distortion correction using convolutional neural networks trained with synthesized images. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10113, pp. 35–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54187-7_3

    Chapter  Google Scholar 

  30. Santana-Cedrés, D., et al.: An iterative optimization algorithm for lens distortion correction using two-parameter models. Image Process. On Line 6, 326–364 (2016)

    Google Scholar 

  31. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  32. Tsai, R.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Robot. Automat. 3(4), 323–344 (1987)

    Article  Google Scholar 

  33. Usenko, V., Demmel, N., Cremers, D.: The double sphere camera model. In: 2018 International Conference on 3D Vision (3DV), pp. 552–560. IEEE (2018)

    Google Scholar 

  34. Wakai, N., Sato, S., Ishii, Y., Yamashita, T.: Rethinking generic camera models for deep single image camera calibration to recover rotation and fisheye distortion. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XVIII, pp. 679–698. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19797-0_39

  35. Xue, Z., Xue, N., Xia, G.S., Shen, W.: Learning to calibrate straight lines for fisheye image rectification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1643–1651 (2019)

    Google Scholar 

  36. Yang, S., Lin, C., Liao, K., Zhang, C., Zhao, Y.: Progressively complementary network for fisheye image rectification using appearance flow. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6348–6357 (2021)

    Google Scholar 

  37. Yogamani, S., et al.: Woodscape: a multi-task, multi-camera fisheye dataset for autonomous driving. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9308–9318 (2019)

    Google Scholar 

  38. Zhang, M., Yao, J., Xia, M., Li, K., Zhang, Y., Liu, Y.: Line-based multi-label energy optimization for fisheye image rectification and calibration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4137–4145 (2015)

    Google Scholar 

  39. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  40. Zhao, K., Lin, C., Liao, K., Yang, S., Zhao, Y.: Revisiting radial distortion rectification in polar-coordinates: a new and efficient learning perspective. IEEE Trans. Circuits Syst. Video Technol. 32(6), 3552–3560 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Porfiri Dal Cin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 668 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dal Cin, A.P., Azzoni, F., Boracchi, G., Magri, L. (2025). Revisiting Calibration of Wide-Angle Radially Symmetric Cameras. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15094. Springer, Cham. https://doi.org/10.1007/978-3-031-72764-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72764-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72763-4

  • Online ISBN: 978-3-031-72764-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics