Abstract
Modern smartphone camera quality heavily relies on the image signal processor (ISP) to enhance captured raw images, utilizing carefully designed modules to produce final output images encoded in a standard color space (e.g., sRGB). Neural-based end-to-end learnable ISPs offer promising advancements, potentially replacing traditional ISPs with their ability to adapt without requiring extensive tuning for each new camera model, as is often the case for nearly every module in traditional ISPs. However, the key challenge with the recent learning-based ISPs is the urge to collect large paired datasets for each distinct camera model due to the influence of intrinsic camera characteristics on the formation of input raw images. This paper tackles this challenge by introducing a novel method for unpaired learning of raw-to-raw translation across diverse cameras. Specifically, we propose Rawformer, an unsupervised Transformer-based encoder-decoder method for raw-to-raw translation. It accurately maps raw images captured by a certain camera to the target camera, facilitating the generalization of learnable ISPs to new unseen cameras. Our method demonstrates superior performance on real camera datasets, achieving higher accuracy compared to previous state-of-the-art techniques, and preserving a more robust correlation between the original and translated raw images. The codes and the pretrained models are available at https://github.com/gosha20777/rawformer.
M. Afifi—Now at Google.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sharif, S.A., Naqvi, R.A., Biswas, M.: Beyond joint demosaicking and denoising: an image processing pipeline for a pixel-bin image sensor. In: CVPR (2021)
Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: CVPR (2018)
Afifi, M., Abdelhamed, A., Abuolaim, A., Punnappurath, A., Brown, M.S.: CIE XYZ net: unprocessing images for low-level computer vision tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 4688–4700 (2021)
Afifi, M., Abuolaim, A.: Semi-supervised raw-to-raw mapping. In: BMVC (2021)
Afifi, M., Brown, M.S.: Sensor-independent illumination estimation for DNN models. In: BMVC (2019)
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
Barron, J.T., Tsai, Y.T.: Fast Fourier color constancy. In: CVPR (2017)
Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: CVPR (2018)
Cheng, D., Prasad, D.K., Brown, M.S.: Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. JOSA A 31(5), 1049–1058 (2014)
Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018)
Conde, M.V., Vasluianu, F., Vazquez-Corral, J., Timofte, R.: Perceptual image enhancement for smartphone real-time applications. In: CVPR (2023)
Dai, L., Liu, X., Li, C., Chen, J.: AWNet: attentive wavelet network for image ISP. In: ECCV (2020)
Delbracio, M., Kelly, D., Brown, M.S., Milanfar, P.: Mobile computational photography: a tour. Annu. Rev. Vision Sci. 7, 571–604 (2021)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Finlayson, G.D., Zhu, Y.: Designing color filters that make cameras more colorimetric. IEEE Trans. Image Process. 30, 853–867 (2020)
Hasinoff, S.W., et al.: Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM Trans. Graph. 35(6), 1–12 (2016)
He, X., et al.: Enhancing RAW-to-sRGB with decoupled style structure in Fourier domain. In: AAAI (2024)
Herrmann, C., et al.: Learning to autofocus. In: CVPR (2020)
Ignatov, A., Chiang, C.M., Kuo, H.K., Sycheva, A., Timofte, R.: Learned smartphone ISP on mobile NPUs with deep learning, mobile AI 2021 challenge: Report. In: CVPRW (2021)
Ignatov, A., et al.: AIM 2019 challenge on raw to RGB mapping: methods and results. In: ICCVW (2019)
Ignatov, A., et al.: AIM 2020 challenge on learned image signal processing pipeline. In: ECCV (2020)
Ignatov, A., Van Gool, L., Timofte, R.: Replacing mobile camera ISP with a single deep learning model. In: CVPRW (2020)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
Jeong, W., Jung, S.W.: RAWtoBit: a fully end-to-end camera ISP network. In: ECCV (2022)
Jiang, Y., Wronski, B., Mildenhall, B., Barron, J.T., Wang, Z., Xue, T.: Fast and high quality image denoising via malleable convolution. In: ECCV (2022)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANS for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: CVPR (2020)
Kim, J., Kim, M., Kang, H., Lee, K.: U-GAT-IT: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. arXiv preprint arXiv:1907.10830 (2019)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)
Liang, Z., Cai, J., Cao, Z., Zhang, L.: Cameranet: a two-stage framework for effective camera ISP learning. IEEE Trans. Image Process. 30, 2248–2262 (2021)
Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NeurIPS (2017)
Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network acoustic models. In: ICML (2013)
Menon, D., Andriani, S., Calvagno, G.: Demosaicing with directional filtering and a posteriori decision. IEEE Trans. Image Process. 16(1), 132–141 (2006)
Nguyen, R., Prasad, D.K., Brown, M.S.: Raw-to-raw: mapping between image sensor color responses. In: CVPR (2014)
Pang, Y., Lin, J., Qin, T., Chen, Z.: Image-to-image translation: methods and applications. IEEE Trans. Multimedia 24, 3859–3881 (2021)
Park, T., Efros, A.A., Zhang, R., Zhu, J.Y.: Contrastive learning for unpaired image-to-image translation. In: ECCV (2020)
Prabhakar, K.R., Vinod, V., Sahoo, N.R., Babu, R.V.: Few-shot domain adaptation for low light raw image enhancement. arXiv preprint arXiv:2303.15528 (2023)
Punnappurath, A., Abuolaim, A., Abdelhamed, A., Levinshtein, A., Brown, M.S.: Day-to-night image synthesis for training nighttime neural ISPS. In: CVPR (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2015)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANS. Adv. Neural Inf. Process. Syst. 29 (2016)
Schwartz, E., Giryes, R., Bronstein, A.M.: DeepISP: toward learning an end-to-end image processing pipeline. IEEE Trans. Image Process. 28(2), 912–923 (2018)
Seo, D., et al.: Graphics2RAW: mapping computer graphics images to sensor raw images. In: ICCV (2023)
Sharma, G., Wu, W., Dalal, E.N.: The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color. Res. Appl. 30(1), 21–30 (2005)
Šindelář, O., Šroubek, F.: Image deblurring in smartphone devices using built-in inertial measurement sensors. J. Electron. Imaging 22(1), 011003 (2013)
Souza, M., Heidrich, W.: Crispnet: color rendition ISP net. arXiv preprint arXiv:2203.10562 (2022)
Tominaga, S., Nishi, S., Ohtera, R.: Measurement and estimation of spectral sensitivity functions for mobile phone cameras. Sensors 21(15), 4985 (2021)
Torbunov, D., et al.: UVCGAN: UNet vision transformer cycle-consistent GAN for unpaired image-to-image translation. In: WACV (2023)
Torbunov, D., et al.: UVCGAN v2: an improved cycle-consistent GAN for unpaired image-to-image translation. arXiv preprint arXiv:2303.16280 (2023)
Truong, P., Danelljan, M., Van Gool, L., Timofte, R.: Learning accurate dense correspondences and when to trust them. In: CVPR (2021)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wirzberger Raimundo, D., Ignatov, A., Timofte, R.: LAN: Lightweight attention-based network for raw-to-RGB smartphone image processing. In: CVPRW, pp. 807–815 (2022)
Wronski, B., et al.: Handheld multi-frame super-resolution. ACM Trans. Graph. 38(4), 1–18 (2019)
Xing, Y., Qian, Z., Chen, Q.: Invertible image signal processing. In: CVPR (2021)
Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: Unsupervised dual learning for image-to-image translation. In: ICCV, pp. 2849–2857 (2017)
Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5728–5739 (2022)
Zamir, S.W., et al.: CycleISP: real image restoration via improved data synthesis. In: CVPR (2020)
Zhang, Z., Wang, H., Liu, M., Wang, R., Zhang, J., Zuo, W.: Learning raw-to-SRGB mappings with inaccurately aligned supervision. In: ICCV (2021)
Zhao, Y., Wu, R., Dong, H.: Unpaired image-to-image translation using adversarial consistency loss. In: ECCV (2020)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)
Zhu, P., Abdal, R., Qin, Y., Wonka, P.: SEAN: image synthesis with semantic region-adaptive normalization. In: CVPR (2020)
Acknowledgments
This work was partly supported by The Alexander von Humboldt Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Perevozchikov, G., Mehta, N., Afifi, M., Timofte, R. (2025). Rawformer: Unpaired Raw-to-Raw Translation for Learnable Camera ISPs. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15094. Springer, Cham. https://doi.org/10.1007/978-3-031-72764-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-72764-1_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72763-4
Online ISBN: 978-3-031-72764-1
eBook Packages: Computer ScienceComputer Science (R0)