Skip to main content

Rawformer: Unpaired Raw-to-Raw Translation for Learnable Camera ISPs

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Modern smartphone camera quality heavily relies on the image signal processor (ISP) to enhance captured raw images, utilizing carefully designed modules to produce final output images encoded in a standard color space (e.g., sRGB). Neural-based end-to-end learnable ISPs offer promising advancements, potentially replacing traditional ISPs with their ability to adapt without requiring extensive tuning for each new camera model, as is often the case for nearly every module in traditional ISPs. However, the key challenge with the recent learning-based ISPs is the urge to collect large paired datasets for each distinct camera model due to the influence of intrinsic camera characteristics on the formation of input raw images. This paper tackles this challenge by introducing a novel method for unpaired learning of raw-to-raw translation across diverse cameras. Specifically, we propose Rawformer, an unsupervised Transformer-based encoder-decoder method for raw-to-raw translation. It accurately maps raw images captured by a certain camera to the target camera, facilitating the generalization of learnable ISPs to new unseen cameras. Our method demonstrates superior performance on real camera datasets, achieving higher accuracy compared to previous state-of-the-art techniques, and preserving a more robust correlation between the original and translated raw images. The codes and the pretrained models are available at https://github.com/gosha20777/rawformer.

M. Afifi—Now at Google.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharif, S.A., Naqvi, R.A., Biswas, M.: Beyond joint demosaicking and denoising: an image processing pipeline for a pixel-bin image sensor. In: CVPR (2021)

    Google Scholar 

  2. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: CVPR (2018)

    Google Scholar 

  3. Afifi, M., Abdelhamed, A., Abuolaim, A., Punnappurath, A., Brown, M.S.: CIE XYZ net: unprocessing images for low-level computer vision tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 4688–4700 (2021)

    Google Scholar 

  4. Afifi, M., Abuolaim, A.: Semi-supervised raw-to-raw mapping. In: BMVC (2021)

    Google Scholar 

  5. Afifi, M., Brown, M.S.: Sensor-independent illumination estimation for DNN models. In: BMVC (2019)

    Google Scholar 

  6. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  7. Barron, J.T., Tsai, Y.T.: Fast Fourier color constancy. In: CVPR (2017)

    Google Scholar 

  8. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: CVPR (2018)

    Google Scholar 

  9. Cheng, D., Prasad, D.K., Brown, M.S.: Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. JOSA A 31(5), 1049–1058 (2014)

    Article  Google Scholar 

  10. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018)

    Google Scholar 

  11. Conde, M.V., Vasluianu, F., Vazquez-Corral, J., Timofte, R.: Perceptual image enhancement for smartphone real-time applications. In: CVPR (2023)

    Google Scholar 

  12. Dai, L., Liu, X., Li, C., Chen, J.: AWNet: attentive wavelet network for image ISP. In: ECCV (2020)

    Google Scholar 

  13. Delbracio, M., Kelly, D., Brown, M.S., Milanfar, P.: Mobile computational photography: a tour. Annu. Rev. Vision Sci. 7, 571–604 (2021)

    Article  Google Scholar 

  14. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  15. Finlayson, G.D., Zhu, Y.: Designing color filters that make cameras more colorimetric. IEEE Trans. Image Process. 30, 853–867 (2020)

    Article  MathSciNet  Google Scholar 

  16. Hasinoff, S.W., et al.: Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM Trans. Graph. 35(6), 1–12 (2016)

    Google Scholar 

  17. He, X., et al.: Enhancing RAW-to-sRGB with decoupled style structure in Fourier domain. In: AAAI (2024)

    Google Scholar 

  18. Herrmann, C., et al.: Learning to autofocus. In: CVPR (2020)

    Google Scholar 

  19. Ignatov, A., Chiang, C.M., Kuo, H.K., Sycheva, A., Timofte, R.: Learned smartphone ISP on mobile NPUs with deep learning, mobile AI 2021 challenge: Report. In: CVPRW (2021)

    Google Scholar 

  20. Ignatov, A., et al.: AIM 2019 challenge on raw to RGB mapping: methods and results. In: ICCVW (2019)

    Google Scholar 

  21. Ignatov, A., et al.: AIM 2020 challenge on learned image signal processing pipeline. In: ECCV (2020)

    Google Scholar 

  22. Ignatov, A., Van Gool, L., Timofte, R.: Replacing mobile camera ISP with a single deep learning model. In: CVPRW (2020)

    Google Scholar 

  23. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  24. Jeong, W., Jung, S.W.: RAWtoBit: a fully end-to-end camera ISP network. In: ECCV (2022)

    Google Scholar 

  25. Jiang, Y., Wronski, B., Mildenhall, B., Barron, J.T., Wang, Z., Xue, T.: Fast and high quality image denoising via malleable convolution. In: ECCV (2022)

    Google Scholar 

  26. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANS for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  27. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: CVPR (2020)

    Google Scholar 

  28. Kim, J., Kim, M., Kang, H., Lee, K.: U-GAT-IT: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. arXiv preprint arXiv:1907.10830 (2019)

  29. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  30. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)

    Google Scholar 

  31. Liang, Z., Cai, J., Cao, Z., Zhang, L.: Cameranet: a two-stage framework for effective camera ISP learning. IEEE Trans. Image Process. 30, 2248–2262 (2021)

    Article  Google Scholar 

  32. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NeurIPS (2017)

    Google Scholar 

  33. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  34. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  35. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network acoustic models. In: ICML (2013)

    Google Scholar 

  36. Menon, D., Andriani, S., Calvagno, G.: Demosaicing with directional filtering and a posteriori decision. IEEE Trans. Image Process. 16(1), 132–141 (2006)

    Article  MathSciNet  Google Scholar 

  37. Nguyen, R., Prasad, D.K., Brown, M.S.: Raw-to-raw: mapping between image sensor color responses. In: CVPR (2014)

    Google Scholar 

  38. Pang, Y., Lin, J., Qin, T., Chen, Z.: Image-to-image translation: methods and applications. IEEE Trans. Multimedia 24, 3859–3881 (2021)

    Article  Google Scholar 

  39. Park, T., Efros, A.A., Zhang, R., Zhu, J.Y.: Contrastive learning for unpaired image-to-image translation. In: ECCV (2020)

    Google Scholar 

  40. Prabhakar, K.R., Vinod, V., Sahoo, N.R., Babu, R.V.: Few-shot domain adaptation for low light raw image enhancement. arXiv preprint arXiv:2303.15528 (2023)

  41. Punnappurath, A., Abuolaim, A., Abdelhamed, A., Levinshtein, A., Brown, M.S.: Day-to-night image synthesis for training nighttime neural ISPS. In: CVPR (2022)

    Google Scholar 

  42. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2015)

    Google Scholar 

  43. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANS. Adv. Neural Inf. Process. Syst. 29 (2016)

    Google Scholar 

  44. Schwartz, E., Giryes, R., Bronstein, A.M.: DeepISP: toward learning an end-to-end image processing pipeline. IEEE Trans. Image Process. 28(2), 912–923 (2018)

    Article  MathSciNet  Google Scholar 

  45. Seo, D., et al.: Graphics2RAW: mapping computer graphics images to sensor raw images. In: ICCV (2023)

    Google Scholar 

  46. Sharma, G., Wu, W., Dalal, E.N.: The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color. Res. Appl. 30(1), 21–30 (2005)

    Article  Google Scholar 

  47. Šindelář, O., Šroubek, F.: Image deblurring in smartphone devices using built-in inertial measurement sensors. J. Electron. Imaging 22(1), 011003 (2013)

    Article  Google Scholar 

  48. Souza, M., Heidrich, W.: Crispnet: color rendition ISP net. arXiv preprint arXiv:2203.10562 (2022)

  49. Tominaga, S., Nishi, S., Ohtera, R.: Measurement and estimation of spectral sensitivity functions for mobile phone cameras. Sensors 21(15), 4985 (2021)

    Article  Google Scholar 

  50. Torbunov, D., et al.: UVCGAN: UNet vision transformer cycle-consistent GAN for unpaired image-to-image translation. In: WACV (2023)

    Google Scholar 

  51. Torbunov, D., et al.: UVCGAN v2: an improved cycle-consistent GAN for unpaired image-to-image translation. arXiv preprint arXiv:2303.16280 (2023)

  52. Truong, P., Danelljan, M., Van Gool, L., Timofte, R.: Learning accurate dense correspondences and when to trust them. In: CVPR (2021)

    Google Scholar 

  53. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  54. Wirzberger Raimundo, D., Ignatov, A., Timofte, R.: LAN: Lightweight attention-based network for raw-to-RGB smartphone image processing. In: CVPRW, pp. 807–815 (2022)

    Google Scholar 

  55. Wronski, B., et al.: Handheld multi-frame super-resolution. ACM Trans. Graph. 38(4), 1–18 (2019)

    Google Scholar 

  56. Xing, Y., Qian, Z., Chen, Q.: Invertible image signal processing. In: CVPR (2021)

    Google Scholar 

  57. Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: Unsupervised dual learning for image-to-image translation. In: ICCV, pp. 2849–2857 (2017)

    Google Scholar 

  58. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5728–5739 (2022)

    Google Scholar 

  59. Zamir, S.W., et al.: CycleISP: real image restoration via improved data synthesis. In: CVPR (2020)

    Google Scholar 

  60. Zhang, Z., Wang, H., Liu, M., Wang, R., Zhang, J., Zuo, W.: Learning raw-to-SRGB mappings with inaccurately aligned supervision. In: ICCV (2021)

    Google Scholar 

  61. Zhao, Y., Wu, R., Dong, H.: Unpaired image-to-image translation using adversarial consistency loss. In: ECCV (2020)

    Google Scholar 

  62. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

  63. Zhu, P., Abdal, R., Qin, Y., Wonka, P.: SEAN: image synthesis with semantic region-adaptive normalization. In: CVPR (2020)

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by The Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Mehta .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 14071 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perevozchikov, G., Mehta, N., Afifi, M., Timofte, R. (2025). Rawformer: Unpaired Raw-to-Raw Translation for Learnable Camera ISPs. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15094. Springer, Cham. https://doi.org/10.1007/978-3-031-72764-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72764-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72763-4

  • Online ISBN: 978-3-031-72764-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics