Abstract
Self-driving vehicles (SDVs) require accurate calibration of LiDARs and cameras to fuse sensor data accurately for autonomy. Traditional calibration methods typically leverage fiducials captured in a controlled and structured scene and compute correspondences to optimize over. These approaches are costly and require substantial infrastructure and operations, making it challenging to scale for vehicle fleets. In this work, we propose UniCal, a unified framework for effortlessly calibrating SDVs equipped with multiple LiDARs and cameras. Our approach is built upon a differentiable scene representation capable of rendering multi-view geometrically and photometrically consistent sensor observations. We jointly learn the sensor calibration and the underlying scene representation through differentiable volume rendering, utilizing outdoor sensor data without the need for specific calibration fiducials. This “drive-and-calibrate” approach significantly reduces costs and operational overhead compared to existing calibration systems, enabling efficient calibration for large SDV fleets at scale. To ensure geometric consistency across observations from different sensors, we introduce a novel surface alignment loss that combines feature-based registration with neural rendering. Comprehensive evaluations on multiple datasets demonstrate that UniCal outperforms or matches the accuracy of existing calibration approaches while being more efficient, demonstrating the value of UniCal for scalable calibration. For more information, visit waabi.ai/unical.
Z. Yang and G. Chen—Equal contribution.
G. Chen—Work done while an intern at Waabi.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alismail, H., Baker, L.D., Browning, B.: Automatic calibration of a range sensor and camera system. In: 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, pp. 286–292. IEEE (2012)
Attal, B., et al.: Törf: Time-of-flight radiance fields for dynamic scene view synthesis. In: Advances in Neural Information Processing Systems, vol. 34, pp. 26289–26301 (2021)
Barfoot, T.D., Furgale, P.T.: Associating uncertainty with three-dimensional poses for use in estimation problems. IEEE Trans. Rob. 30(3), 679–693 (2014)
Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: ICCV, pp. 5855–5864 (2021)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: CVPR, pp. 5470–5479 (2022)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-NeRF: anti-aliased grid-based neural radiance fields. In: ICCV, pp. 19697–19705 (2023)
Bian, W., Wang, Z., Li, K., Bian, J.W., Prisacariu, V.A.: Nope-NeRF: optimising neural radiance field with no pose prior. In: CVPR, pp. 4160–4169 (2023)
Boss, M., et al.: SAMURAI: shape and material from unconstrained real-world arbitrary image collections. In: NeurIPS, vol. 35, pp. 26389–26403 (2022)
Cao, A., Johnson, J.: HexPlane: a fast representation for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130–141 (2023)
Chai, Z., Sun, Y., Xiong, Z.: A novel method for LiDAR camera calibration by plane fitting. In: 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 286–291. IEEE (2018)
Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992)
Choi, S., Zhou, Q.Y., Koltun, V.: Robust reconstruction of indoor scenes. In: CVPR, pp. 5556–5565 (2015)
DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 224–236 (2018)
Domhof, J., Kooij, J.F., Gavrila, D.M.: A joint extrinsic calibration tool for radar, camera and LiDAR. IEEE Trans. Intell. Veh. 6(3), 571–582 (2021)
Fang, C., Ding, S., Dong, Z., Li, H., Zhu, S., Tan, P.: Single-shot is enough: panoramic infrastructure based calibration of multiple cameras and 3D LiDARs. In: IROS, pp. 8890–8897. IEEE (2021)
Foucard, L., Xia, S., Griffith, T., Lutz, K.: Continuous real-time sensor recalibration: a long-range perception game-changer, Aurora, March 2023
Furgale, P., Barfoot, T.D.: Visual teach and repeat for long-range rover autonomy. J. Field Rob. 27(5), 534–560 (2010)
Geiger, A., Moosmann, F., Car, Ö., Schuster, B.: Automatic camera and range sensor calibration using a single shot. In: ICRA, pp. 3936–3943. IEEE (2012)
Hagemann, A., Knorr, M., Stiller, C.: Modeling dynamic target deformation in camera calibration. In: WACV, pp. 1747–1755 (2022)
Heo, H., et al.: Robust camera pose refinement for multi-resolution hash encoding. arXiv preprint arXiv:2302.01571 (2023)
Herau, Q., et al.: MOISST: multi-modal optimization of implicit scene for spatiotemporal calibration. In: IROS (2023)
Herau, Q., et al.: SOAC: spatio-temporal overlap-aware multi-sensor calibration using neural radiance fields. In: CVPR (2024). http://arxiv.org/abs/2311.15803
Huang, S., et al.: Neural LiDAR fields for novel view synthesis (2023)
Ishikawa, R., Oishi, T., Ikeuchi, K.: LiDAR and camera calibration using motions estimated by sensor fusion odometry. In: IROS, pp. 7342–7349. IEEE (2018)
Iyer, G., Ram., R.K., Murthy, J.K., Krishna, K.M.: CalibNet: geometrically supervised extrinsic calibration using 3D spatial transformer networks. In: IROS (2018)
Jain, A., Zhang, L., Jiang, L.: High-fidelity sensor calibration for autonomous vehicles. Woven Planet Level 5 (2019)
Jeong, Y., Ahn, S., Choy, C., Anandkumar, A., Cho, M., Park, J.: Self-calibrating neural radiance fields. In: ICCV, pp. 5846–5854 (2021)
Jiang, P., Osteen, P., Saripalli, S.: SemCal: semantic LiDAR-camera calibration using neural mutual information estimator. In: 2021 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 1–7. IEEE (2021)
Jing, X., Ding, X., Xiong, R., Deng, H., Wang, Y.: DXQ-Net: differentiable LiDAR-camera extrinsic calibration using quality-aware flow. In: IROS (2022)
Kang, J., Doh, N.L.: Automatic targetless camera-LiDAR calibration by aligning edge with gaussian mixture model. J. Field Rob. 37(1), 158–179 (2020)
Kim, H., Rangan, S.N.K., Pagad, S., Yalla, V.G.: Motion-based calibration between multiple LiDARs and INS with rigid body constraint on vehicle platform. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 2058–2064. IEEE (2020)
Koide, K., Oishi, S., Yokozuka, M., Banno, A.: General, single-shot, target-less, and automatic LiDAR-camera extrinsic calibration toolbox. In: ICRA (2023)
Levinson, J., Thrun, S.: Automatic online calibration of cameras and lasers. In: RSS, vol. 2. Citeseer (2013)
Levy, A., Matthews, M., Sela, M., Wetzstein, G., Lagun, D.: MELON: NeRF with unposed images using equivalence class estimation. arXiv:preprint (2023)
Li, L., et al.: Joint intrinsic and extrinsic lidar-camera calibration in targetless environments using plane-constrained bundle adjustment (2023)
Li, X., Xiao, Y., Wang, B., Ren, H., Zhang, Y., Ji, J.: Automatic targetless LiDAR-camera calibration: a survey. Artif. Intell. Rev. 56(9), 9949–9987 (2023)
Li, Z., et al.: Neuralangelo: high-fidelity neural surface reconstruction. In: CVPR, pp. 8456–8465 (2023)
Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. In: ICCV, pp. 5741–5751 (2021)
Lindenberger, P., Sarlin, P.E., Pollefeys, M.: LightGlue: local feature matching at light speed. In: ICCV (2023)
Liu, X., Yuan, C., Zhang, F.: Targetless extrinsic calibration of multiple small FoV LiDARS and cameras using adaptive voxelization. IEEE Trans. Instrum. Meas. 71, 1–12 (2022)
Lv, X., Wang, B., Dou, Z., Ye, D., Wang, S.: LCCNet: LiDAR and camera self-calibration using cost volume network. In: CVPR Workshop, pp. 2894–2901 (2021)
Meng, Q., et al.: GNeRF: GAN-based neural radiance field without posed camera. In: ICCV, pp. 6351–6361 (2021)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR, pp. 4460–4470 (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding (2022)
Ou, N., Cai, H., Wang, J.: Targetless LiDAR-camera calibration via cross-modality structure consistency. IEEE Trans. Intell. Veh. (2023)
Pandey, G., McBride, J., Savarese, S., Eustice, R.: Automatic targetless extrinsic calibration of a 3D LiDAR and camera by maximizing mutual information. In: AAAI, vol. 26, pp. 2053–2059 (2012)
Pandey, G., McBride, J.R., Savarese, S., Eustice, R.M.: Automatic extrinsic calibration of vision and LiDAR by maximizing mutual information. J. Field Rob. 32(5), 696–722 (2015)
Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: ICCV, pp. 14314–14323 (2021)
Powell, M.J.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964)
Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: CVPR, pp. 10318–10327 (2021)
Pun, A., et al.: LightSim: neural lighting simulation for urban scenes. In: NeurIPS (2023)
Ruan, M., Huber, D.: Calibration of 3D sensors using a spherical target. In: 3DV, vol. 1, pp. 187–193. IEEE (2014)
Schneider, N., Piewak, F., Stiller, C., Franke, U.: RegNet: multimodal sensor registration using deep neural networks. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1803–1810. IEEE (2017)
Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7462–7473 (2020)
Smith, C., Du, Y., Tewari, A., Sitzmann, V.: FlowCam: training generalizable 3D radiance fields without camera poses via pixel-aligned scene flow (2023)
Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: CVPR, pp. 2446–2454 (2020)
Tarimu Fu, L.F., Fallon, M.: Batch differentiable pose refinement for in-the-wild camera/LiDAR extrinsic calibration. In: CoRL (2023)
Taylor, Z., Nieto, J.: Automatic calibration of LiDAR and camera images using normalized mutual information. In: ICRA (2013)
Tonderski, A., Lindström, C., Hess, G., Ljungbergh, W., Svensson, L., Petersson, C.: NeuRAD: neural rendering for autonomous driving. In: CVPR, pp. 14895–14904 (2024)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment—a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21
Tu, D., Wang, B., Cui, H., Liu, Y., Shen, S.: Multi-camera-LiDAR auto-calibration by joint structure-from-motion. In: IROS (2022)
Tóth, T., Pusztai, Z., Hajder, L.: Automatic LiDAR-camera calibration of extrinsic parameters using a spherical target. In: ICRA, pp. 8580–8586 (2020). https://doi.org/10.1109/ICRA40945.2020.9197316
Unnikrishnan, R., Hebert, M.: Fast extrinsic calibration of a laser rangefinder to a camera. Robotics Institute, Pittsburgh, PA, Technical report, CMU-RI-TR-05-09 (2005)
Wang, J., et al.: CADSim: robust and scalable in-the-wild 3D reconstruction for controllable sensor simulation. In: Conference on Robot Learning (2023)
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. In: NeurIPS (2021)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP (2004)
Wang, Z., et al.: Neural fields meet explicit geometric representations for inverse rendering of urban scenes. In: CVPR, pp. 8370–8380 (2023)
Wang, Z., Wu, S., Xie, W., Chen, M., Prisacariu, V.A.: NeRF–: neural radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064 (2021)
Wilson, B., et al.: Argoverse 2: next generation datasets for self-driving perception and forecasting. In: Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks 2021) (2021)
Wu, S., Hadachi, A., Vivet, D., Prabhakar, Y.: NetCalib: a novel approach for LiDAR-camera auto-calibration based on deep learning. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 6648–6655, January 2021. https://doi.org/10.1109/ICPR48806.2021.9412653
Xiao, P., et al.: PandaSet: advanced sensor suite dataset for autonomous driving. In: ITSC (2021)
Yan, G., He, F., Shi, C., Wei, P., Cai, X., Li, Y.: Joint camera intrinsic and LiDAR-camera extrinsic calibration. In: ICRA, pp. 11446–11452. IEEE (2023)
Yang, Z., et al.: UniSim: a neural closed-loop sensor simulator. In: CVPR (2023)
Yang, Z., Manivasagam, S., Chen, Y., Wang, J., Hu, R., Urtasun, R.: Reconstructing objects in-the-wild for realistic sensor simulation. In: ICRA, pp. 11661–11668. IEEE (2023)
Yang, Z., Manivasagam, S., Liang, M., Yang, B., Ma, W.C., Urtasun, R.: Recovering and simulating pedestrians in the wild. In: Conference on Robot Learning, pp. 419–431. PMLR (2021)
Yang, Z., et al.: S3: neural shape, skeleton, and skinning fields for 3D human modeling. In: CVPR, pp. 13284–13293 (2021)
Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. In: NeurIPS, vol. 34, pp. 4805–4815 (2021)
Yuan, C., Liu, X., Hong, X., Zhang, F.: Pixel-level extrinsic self calibration of high resolution lidar and camera in targetless environments. IEEE Rob. Autom. Lett. 6(4), 7517–7524 (2021)
Zhang, Q., Pless, R.: Extrinsic calibration of a camera and laser range finder (improves camera calibration). In: IROS, vol. 3, pp. 2301–2306. IEEE (2004)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
Zhang, X., Zhu, S., Guo, S., Li, J., Liu, H.: Line-based automatic extrinsic calibration of LiDAR and camera. In: ICRA, pp. 9347–9353. IEEE (2021)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)
Zhou, L., Li, Z., Kaess, M.: Automatic extrinsic calibration of a camera and a 3D LiDAR using line and plane correspondences. In: IROS, pp. 5562–5569. IEEE (2018)
Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv preprint arXiv:1801.09847 (2018)
Zhou, S., Xie, S., Ishikawa, R., Sakurada, K., Onishi, M., Oishi, T.: INF: implicit neural fusion for LiDAR and camera. In: IROS (2023)
Acknowledgements
We thank Yun Chen, Jingkang Wang, Richard Slocum for their helpful discussions. We also appreciate the invaluable assistance and support from the Waabi team. Additionally, we thank the anonymous reviewers for their constructive comments and suggestions to improve this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, Z. et al. (2025). UniCal: Unified Neural Sensor Calibration. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15094. Springer, Cham. https://doi.org/10.1007/978-3-031-72764-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-72764-1_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72763-4
Online ISBN: 978-3-031-72764-1
eBook Packages: Computer ScienceComputer Science (R0)