Skip to main content

Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15094))

Included in the following conference series:

  • 433 Accesses

Abstract

This study addresses the Domain-Class Incremental Learning problem, a realistic but challenging continual learning scenario where both the domain distribution and target classes vary across tasks. To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability. However, this incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability. Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy computation overhead. To address this problem efficiently, we propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of VLMs from a perspective of avoiding information interference. Specifically, we design a fully residual mechanism to infuse newly learned knowledge into a frozen backbone, while introducing minimal adverse impacts on pre-trained knowledge. Besides, this residual property enables our distribution-aware integration calibration scheme, explicitly controlling the information implantation process for test data from unseen distributions. Experiments demonstrate that our DIKI surpasses the current state-of-the-art approach using only 0.86% of the trained parameters and requiring substantially less training time. Code is available at: https://github.com/lloongx/DIKI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, H., Cha, S., Lee, D., Moon, T.: Uncertainty-based continual learning with adaptive regularization. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  2. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_9

    Chapter  Google Scholar 

  3. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  4. Bowman, B., et al: A-La-Carte Prompt Tuning (APT): combining distinct data via composable prompting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14984–14993 (2023)

    Google Scholar 

  5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  6. Chen, S., et al.: AdaptFormer: adapting vision transformers for scalable visual recognition. In: Advances in Neural Information Processing Systems, vol. 35, pp. 16664–16678 (2022)

    Google Scholar 

  7. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3606–3613 (2014)

    Google Scholar 

  8. De Lange, M., et al.: A continual learning survey: defying forgetting in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3366–3385 (2021)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Deng, L.: The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  11. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794 (2021)

    Google Scholar 

  12. Ding, Y., Liu, L., Tian, C., Yang, J., Ding, H.: Don’t stop learning: towards continual learning for the clip model. arXiv preprint arXiv:2207.09248 (2022)

  13. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  14. Douillard, A., Ramé, A., Couairon, G., Cord, M.: DyTox: transformers for continual learning with dynamic token expansion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9285–9295 (2022)

    Google Scholar 

  15. Fang, C., et al.: Real-world image dehazing with coherence-based label generator and cooperative unfolding network. arXiv preprint arXiv:2406.07966 (2024)

  16. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: 2004 Conference on Computer Vision and Pattern Recognition Workshop, pp. 178–178. IEEE (2004)

    Google Scholar 

  17. Gao, P., et al.: CLIP-adapter: better vision-language models with feature adapters. Int. J. Comput. Vis., 1–15 (2023)

    Google Scholar 

  18. He, C., et al.: Reti-Diff: illumination degradation image restoration with retinex-based latent diffusion model. arXiv preprint arXiv:2311.11638 (2023)

  19. He, C., et al.: Camouflaged object detection with feature decomposition and edge reconstruction. In: CVPR, pp. 22046–22055 (2023)

    Google Scholar 

  20. He, C., Li, K., Zhang, Y., Xu, G., Tang, L.: Weakly-supervised concealed object segmentation with SAM-based pseudo labeling and multi-scale feature grouping. In: NeurIPS (2024)

    Google Scholar 

  21. He, C., Li, K., Zhang, Y., Zhang, Y., Guo, Z., Li, X.: Strategic preys make acute predators: enhancing camouflaged object detectors by generating camouflaged objects. In: ICLR (2024)

    Google Scholar 

  22. He, C., et al.: Diffusion models in low-level vision: a survey. arXiv preprint arXiv:2406.11138 (2024)

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  24. Hegde, D., Valanarasu, J.M.J., Patel, V.: CLIP goes 3D: leveraging prompt tuning for language grounded 3D recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2028–2038 (2023)

    Google Scholar 

  25. Helber, P., Bischke, B., Dengel, A., Borth, D.: EuroSAT: a novel dataset and deep learning benchmark for land use and land cover classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(7), 2217–2226 (2019)

    Article  Google Scholar 

  26. Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. In: International Conference on Machine Learning, pp. 2790–2799. PMLR (2019)

    Google Scholar 

  27. Hu, E.J., et al.: LoRA: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)

  28. Hu, Z., Lyu, J., Gao, D., Vasconcelos, N.: Pop: prompt of prompts for continual learning. arXiv preprint arXiv:2306.08200 (2023)

  29. Isele, D., Cosgun, A.: Selective experience replay for lifelong learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  30. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916. PMLR (2021)

    Google Scholar 

  31. Jia, M., et al.: Visual prompt tuning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 709–727. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_41

    Chapter  Google Scholar 

  32. Jie, S., Deng, Z.H.: FacT: factor-tuning for lightweight adaptation on vision transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 1060–1068 (2023)

    Google Scholar 

  33. Ju, C., Han, T., Zheng, K., Zhang, Y., Xie, W.: Prompting visual-language models for efficient video understanding. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13695, pp. 105–124. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_7

    Chapter  Google Scholar 

  34. Khan, M.G.Z.A., Naeem, M.F., Van Gool, L., Stricker, D., Tombari, F., Afzal, M.Z.: Introducing language guidance in prompt-based continual learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11463–11473 (2023)

    Google Scholar 

  35. Khattak, M.U., Rasheed, H., Maaz, M., Khan, S., Khan, F.S.: MaPLe: multi-modal prompt learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19113–19122 (2023)

    Google Scholar 

  36. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Nat. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  37. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 554–561 (2013)

    Google Scholar 

  38. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  39. Lai, X., et al.: LISA: reasoning segmentation via large language model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9579–9589 (2024)

    Google Scholar 

  40. Lai, X., et al.: Semi-supervised semantic segmentation with directional context-aware consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1205–1214 (2021)

    Google Scholar 

  41. Li, J., Li, D., Xiong, C., Hoi, S.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: International Conference on Machine Learning, pp. 12888–12900. PMLR (2022)

    Google Scholar 

  42. Li, X.L., Liang, P.: Prefix-tuning: optimizing continuous prompts for generation. arXiv preprint arXiv:2101.00190 (2021)

  43. Li, X., Zhou, Y., Wu, T., Socher, R., Xiong, C.: Learn to grow: a continual structure learning framework for overcoming catastrophic forgetting. In: International Conference on Machine Learning, pp. 3925–3934. PMLR (2019)

    Google Scholar 

  44. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  45. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 55(9), 1–35 (2023)

    Article  Google Scholar 

  46. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  47. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)

  48. Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by iterative pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7765–7773 (2018)

    Google Scholar 

  49. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729. IEEE (2008)

    Google Scholar 

  50. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.: Cats and dogs. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3498–3505. IEEE (2012)

    Google Scholar 

  51. Peng, B., et al..: Hierarchical dense correlation distillation for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23641–23651 (2023)

    Google Scholar 

  52. Prabhu, A., Torr, P.H.S., Dokania, P.K.: GDumb: a simple approach that questions our progress in continual learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 524–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_31

    Chapter  Google Scholar 

  53. Pu, Y., Han, Y., Wang, Y., Feng, J., Deng, C., Huang, G.: Fine-grained recognition with learnable semantic data augmentation. IEEE Trans. Image Process. (2024)

    Google Scholar 

  54. Pu, Y., et al.: Rank-DETR for high quality object detection. In: Advances in Neural Information Processing Systems, vol. 36 (2024)

    Google Scholar 

  55. Pu, Y., et al.: Adaptive rotated convolution for rotated object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6589–6600 (2023)

    Google Scholar 

  56. Qian, Z., Wang, X., Duan, X., Qin, P., Li, Y., Zhu, W.: Decouple before interact: multi-modal prompt learning for continual visual question answering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2953–2962 (2023)

    Google Scholar 

  57. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  58. Rao, D., Visin, F., Rusu, A., Pascanu, R., Teh, Y.W., Hadsell, R.: Continual unsupervised representation learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  59. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  60. Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., Wayne, G.: Experience replay for continual learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  61. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: Advances in Neural Information Processing Systems, vol. 35, pp. 36479–36494 (2022)

    Google Scholar 

  62. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  63. Shen, S., et al.: How much can CLIP benefit vision-and-language tasks? arXiv preprint arXiv:2107.06383 (2021)

  64. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  65. Smith, J.S., et al.: Construct-VL: data-free continual structured VL concepts learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14994–15004 (2023)

    Google Scholar 

  66. Smith, J.S., et al.: CODA-Prompt: continual decomposed attention-based prompting for rehearsal-free continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11909–11919 (2023)

    Google Scholar 

  67. Sohn, K., et al.: Visual prompt tuning for generative transfer learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19840–19851 (2023)

    Google Scholar 

  68. Tang, L., Li, K., He, C., Zhang, Y., Li, X.: Consistency regularization for generalizable source-free domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4323–4333 (2023)

    Google Scholar 

  69. Tang, L., Li, K., He, C., Zhang, Y., Li, X.: Source-free domain adaptive fundus image segmentation with class-balanced mean teacher. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14220, pp. 684–694. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_65

    Chapter  Google Scholar 

  70. Tian, Z., et al.: Generalized few-shot semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11563–11572 (2022)

    Google Scholar 

  71. Tian, Z., et al.: Learning shape-aware embedding for scene text detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4234–4243 (2019)

    Google Scholar 

  72. Tian, Z., Zhao, H., Shu, M., Yang, Z., Li, R., Jia, J.: Prior guided feature enrichment network for few-shot segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 44(2), 1050–1065 (2020)

    Article  Google Scholar 

  73. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  74. Van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. arXiv preprint arXiv:1904.07734 (2019)

  75. Wang, J., Ma, Y., Guo, J., Xiao, Y., Huang, G., Li, X.: COVE: unleashing the diffusion feature correspondence for consistent video editing. arXiv preprint arXiv:2406.08850 (2024)

  76. Wang, J., et al.: GRA: detecting oriented objects through group-wise rotating and attention. arXiv preprint arXiv:2403.11127 (2024)

  77. Wang, R., et al.: K-adapter: infusing knowledge into pre-trained models with adapters (2020)

    Google Scholar 

  78. Wang, Y., Huang, Z., Hong, X.: S-prompts learning with pre-trained transformers: an Occam’s razor for domain incremental learning. In: Advances in Neural Information Processing Systems, vol. 35, pp. 5682–5695 (2022)

    Google Scholar 

  79. Wang, Z., et al.: DualPrompt: complementary prompting for rehearsal-free continual learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13686, pp. 631–648. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19809-0_36

    Chapter  Google Scholar 

  80. Wang, Z., et al.: Learning to prompt for continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149 (2022)

    Google Scholar 

  81. Wortsman, M., et al.: Robust fine-tuning of zero-shot models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7959–7971 (2022)

    Google Scholar 

  82. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3485–3492. IEEE (2010)

    Google Scholar 

  83. Yang, J., Ding, R., Brown, E., Qi, X., Xie, S.: V-IRL: grounding virtual intelligence in real life. arXiv preprint arXiv:2402.03310 (2024)

  84. Yang, S., Tian, Z., Jiang, L., Jia, J.: Unified language-driven zero-shot domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23407–23415 (2024)

    Google Scholar 

  85. Yang, S., et al.: Exploring sparse visual prompt for domain adaptive dense prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 16334–16342 (2024)

    Google Scholar 

  86. Yao, L., et al.: FILIP: fine-grained interactive language-image pre-training. arXiv preprint arXiv:2111.07783 (2021)

  87. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable networks. arXiv preprint arXiv:1708.01547 (2017)

  88. Zhai, X., et al.: LiT: zero-shot transfer with locked-image text tuning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18123–18133 (2022)

    Google Scholar 

  89. Zhang, J., et al.: Class-incremental learning via deep model consolidation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1131–1140 (2020)

    Google Scholar 

  90. Zhang, R., et al.: LLaMA-adapter: efficient fine-tuning of language models with zero-init attention. arXiv preprint arXiv:2303.16199 (2023)

  91. Zheng, Z., Ma, M., Wang, K., Qin, Z., Yue, X., You, Y.: Preventing zero-shot transfer degradation in continual learning of vision-language models. arXiv preprint arXiv:2303.06628 (2023)

  92. Zhou, D.W., Zhang, Y., Ning, J., Ye, H.J., Zhan, D.C., Liu, Z.: Learning without forgetting for vision-language models. arXiv preprint arXiv:2305.19270 (2023)

  93. Zhou, H., et al.: UniHead: unifying multi-perception for detection heads. IEEE Trans. Neural Netw. Learn. Syst. (2024)

    Google Scholar 

  94. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-language models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16816–16825 (2022)

    Google Scholar 

  95. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. Int. J. Comput. Vision 130(9), 2337–2348 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 587 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, L. et al. (2025). Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15094. Springer, Cham. https://doi.org/10.1007/978-3-031-72764-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72764-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72763-4

  • Online ISBN: 978-3-031-72764-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics