Abstract
Remote photoplethysmography (rPPG) has gained significant attention in recent years for its ability to extract physiological signals from facial videos. While existing rPPG measurement methods have shown satisfactory performance in intra-dataset and cross-dataset scenarios, they often overlook the incremental learning scenario, where training data is presented sequentially, resulting in the issue of catastrophic forgetting. Meanwhile, most existing class incremental learning approaches are unsuitable for rPPG measurement. In this paper, we present a novel method named ADDP to tackle continual learning for rPPG measurement. We first employ adapter to efficiently finetune the model on new tasks. Then we design domain prototypes that are more applicable to rPPG signal regression than commonly used class prototypes. Based on these prototypes, we propose a feature augmentation strategy to consolidate the past knowledge and an inference simplification strategy to convert potentially forgotten tasks into familiar ones for the model. To evaluate ADDP and enable fair comparisons, we create the first continual learning protocol for rPPG measurement. Comprehensive experiments demonstrate the effectiveness of our method for rPPG continual learning. Source code is available at https://github.com/MayYoY/rPPGDIL.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It is feasible but less effective for rPPG measurement to forcefully utilize prefix to finetune the last two stages of Uniformer. See the supplementary material for details.
- 2.
For the influence of the selection of these hyperparameters, please refer to the supplementary material for details.
References
Ahn, H., Kwak, J., Lim, S., Bang, H., Kim, H., Moon, T.: SS-IL: Separated softmax for incremental learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 844–853 (2021)
Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_9
Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for online continual learning. In: Advances in Neural Information Processing Systems, 32 (2019)
Bang, J., Kim, H., Yoo, Y., Ha, J.W., Choi, J.: Rainbow memory: continual learning with a memory of diverse samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8218–8227 (2021)
Benezeth, Y., Li, P., Macwan, R., Nakamura, K., Gomez, R., Yang, F.: Remote heart rate variability for emotional state monitoring. In: 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp. 153–156. IEEE (2018)
Bobbia, S., Macwan, R., Benezeth, Y., Mansouri, A., Dubois, J.: Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recogn. Lett. 124, 82–90 (2019)
Cai, R., et al.: Rehearsal-free domain continual face anti-spoofing: generalize more and forget less. arXiv preprint arXiv:2303.09914 (2023)
Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 241–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_15
Chen, W., McDuff, D.: DeepPhys: video-based physiological measurement using convolutional attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 356–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_22
De Haan, G., Jeanne, V.: Robust pulse rate from chrominance-based RPPG. IEEE Trans. Biomed. Eng. 60(10), 2878–2886 (2013)
De Haan, G., Van Leest, A.: Improved motion robustness of remote-PPG by using the blood volume pulse signature. Physiol. Meas. 35(9), 1913 (2014)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Du, J., Liu, S.Q., Zhang, B., Yuen, P.C.: Dual-bridging with adversarial noise generation for domain adaptive RPPG estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10355–10364 (2023)
Gao, Q., et al.: A unified continual learning framework with general parameter-efficient tuning. arXiv preprint arXiv:2303.10070 (2023)
Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211 (2013)
Guo, Q., Zhang, C., Zhang, Y., Liu, H.: An efficient SVD-based method for image denoising. IEEE Trans. Circuits Syst. Video Technol. 26(5), 868–880 (2015)
He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., Neubig, G.: Towards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366 (2021)
Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Lifelong learning via progressive distillation and retrospection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 452–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_27
Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 831–839 (2019)
Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. In: International Conference on Machine Learning, pp. 2790–2799. PMLR (2019)
Huang, W., et al.: Style projected clustering for domain generalized semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3061–3071 (2023)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)
Kim, S., Noci, L., Orvieto, A., Hofmann, T.: Achieving a better stability-plasticity trade-off via auxiliary networks in continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11930–11939 (2023)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kirkpatrick, J.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)
Lee, S., Ha, J., Zhang, D., Kim, G.: A neural Dirichlet process mixture model for task-free continual learning. arXiv preprint arXiv:2001.00689 (2020)
Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021)
Li, K., et al.: Uniformer: unified transformer for efficient spatiotemporal representation learning. arXiv preprint arXiv:2201.04676 (2022)
Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)
Liu, X., Fromm, J., Patel, S., McDuff, D.: Multi-task temporal shift attention networks for on-device contactless vitals measurement. Adv. Neural. Inf. Process. Syst. 33, 19400–19411 (2020)
Liu, X., Hill, B., Jiang, Z., Patel, S., McDuff, D.: EfficientPhys: enabling simple, fast and accurate camera-based cardiac measurement. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5008–5017 (2023)
Lu, H., Han, H., Zhou, S.K.: Dual-GAN: joint BVP and noise modeling for remote physiological measurement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12404–12413 (2021)
Lu, H., Yu, Z., Niu, X., Chen, Y.C.: Neuron structure modeling for generalizable remote physiological measurement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18589–18599 (2023)
Malepathirana, T., Senanayake, D., Halgamuge, S.: Napa-VQ: neighborhood-aware prototype augmentation with vector quantization for continual learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11674–11684 (2023)
McDuff, D.: Camera measurement of physiological vital signs. ACM Comput. Surv. 55(9), 1–40 (2023)
Niu, X., Han, H., Shan, S., Chen, X.: VIPL-HR: a multi-modal database for pulse estimation from less-constrained face video. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018, Part V. LNCS, vol. 11365, pp. 562–576. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_36
Niu, X., Shan, S., Han, H., Chen, X.: RhythmNet: end-to-end heart rate estimation from face via spatial-temporal representation. IEEE Trans. Image Process. 29, 2409–2423 (2019)
Niu, X., Yu, Z., Han, H., Li, X., Shan, S., Zhao, G.: Video-based remote physiological measurement via cross-verified feature disentangling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part II. LNCS, vol. 12347, pp. 295–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_18
Niu, X., et al.: Robust remote heart rate estimation from face utilizing spatial-temporal attention. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pp. 1–8. IEEE (2019)
Park, J., Han, D.J., Kim, S., Moon, J.: Test-time style shifting: handling arbitrary styles in domain generalization. arXiv preprint arXiv:2306.04911 (2023)
Poh, M.Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 18(10), 10762–10774 (2010)
Rajwade, A., Rangarajan, A., Banerjee, A.: Image denoising using the higher order singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 849–862 (2012)
Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: ICARL: Iicremental classifier and representation learning. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)
Robins, A.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci. 7(2), 123–146 (1995)
Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)
Serra, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. In: International Conference on Machine Learning, pp. 4548–4557. PMLR (2018)
Smith, J.S., et al.: Coda-prompt: continual decomposed attention-based prompting for rehearsal-free continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11909–11919 (2023)
Speth, J., Vance, N., Flynn, P., Czajka, A.: Non-contrastive unsupervised learning of physiological signals from video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14464–14474 (2023)
Stricker, R., Müller, S., Gross, H.M.: Non-contact video-based pulse rate measurement on a mobile service robot. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp. 1056–1062. IEEE (2014)
Tang, J., et al.: MMPD: multi-domain mobile video physiology dataset. arXiv preprint arXiv:2302.03840 (2023)
Wang, W., Stuijk, S., De Haan, G.: Exploiting spatial redundancy of image sensor for motion robust RPPG. IEEE Trans. Biomed. Eng. 62(2), 415–425 (2014)
Wang, Y., Huang, Z., Hong, X.: S-prompts learning with pre-trained transformers: An Occam’s razor for domain incremental learning. Adv. Neural. Inf. Process. Syst. 35, 5682–5695 (2022)
Wang, Z., et al.: Dualprompt: complementary prompting for rehearsal-free continual learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13686, pp. 631–648. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19809-0_36
Wang, Z., et al.: Learning to prompt for continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149 (2022)
Xi, L., Chen, W., Zhao, C., Wu, X., Wang, J.: Image enhancement for remote photoplethysmography in a low-light environment. In: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), pp. 1–7. IEEE (2020)
Xue, M., Zhang, H., Song, J., Song, M.: Meta-attention for VIT-backed continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 150–159 (2022)
Yu, Z., Li, X., Zhao, G.: Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks. arXiv preprint arXiv:1905.02419 (2019)
Yu, Z., Li, X., Zhao, G.: Facial-video-based physiological signal measurement: recent advances and affective applications. IEEE Signal Process. Mag. 38(6), 50–58 (2021)
Yu, Z., Shen, Y., Shi, J., Zhao, H., Torr, P.H., Zhao, G.: Physformer: facial video-based physiological measurement with temporal difference transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4186–4196 (2022)
Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)
Zhu, F., Cheng, Z., Zhang, X.Y., Liu, C.l.: Class-incremental learning via dual augmentation. Adv. Neural. Inf. Process. Syst. 34, 14306–14318 (2021)
Zhu, F., Zhang, X.Y., Wang, C., Yin, F., Liu, C.L.: Prototype augmentation and self-supervision for incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5871–5880 (2021)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (62172381).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liang, Q., Chen, Y., Hu, Y. (2025). Continual Learning for Remote Physiological Measurement: Minimize Forgetting and Simplify Inference. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15094. Springer, Cham. https://doi.org/10.1007/978-3-031-72764-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-72764-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72763-4
Online ISBN: 978-3-031-72764-1
eBook Packages: Computer ScienceComputer Science (R0)