Skip to main content

Continual Learning for Remote Physiological Measurement: Minimize Forgetting and Simplify Inference

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15094))

Included in the following conference series:

  • 462 Accesses

Abstract

Remote photoplethysmography (rPPG) has gained significant attention in recent years for its ability to extract physiological signals from facial videos. While existing rPPG measurement methods have shown satisfactory performance in intra-dataset and cross-dataset scenarios, they often overlook the incremental learning scenario, where training data is presented sequentially, resulting in the issue of catastrophic forgetting. Meanwhile, most existing class incremental learning approaches are unsuitable for rPPG measurement. In this paper, we present a novel method named ADDP to tackle continual learning for rPPG measurement. We first employ adapter to efficiently finetune the model on new tasks. Then we design domain prototypes that are more applicable to rPPG signal regression than commonly used class prototypes. Based on these prototypes, we propose a feature augmentation strategy to consolidate the past knowledge and an inference simplification strategy to convert potentially forgotten tasks into familiar ones for the model. To evaluate ADDP and enable fair comparisons, we create the first continual learning protocol for rPPG measurement. Comprehensive experiments demonstrate the effectiveness of our method for rPPG continual learning. Source code is available at https://github.com/MayYoY/rPPGDIL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is feasible but less effective for rPPG measurement to forcefully utilize prefix to finetune the last two stages of Uniformer. See the supplementary material for details.

  2. 2.

    For the influence of the selection of these hyperparameters, please refer to the supplementary material for details.

References

  1. Ahn, H., Kwak, J., Lim, S., Bang, H., Kim, H., Moon, T.: SS-IL: Separated softmax for incremental learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 844–853 (2021)

    Google Scholar 

  2. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_9

    Chapter  Google Scholar 

  3. Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for online continual learning. In: Advances in Neural Information Processing Systems, 32 (2019)

    Google Scholar 

  4. Bang, J., Kim, H., Yoo, Y., Ha, J.W., Choi, J.: Rainbow memory: continual learning with a memory of diverse samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8218–8227 (2021)

    Google Scholar 

  5. Benezeth, Y., Li, P., Macwan, R., Nakamura, K., Gomez, R., Yang, F.: Remote heart rate variability for emotional state monitoring. In: 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp. 153–156. IEEE (2018)

    Google Scholar 

  6. Bobbia, S., Macwan, R., Benezeth, Y., Mansouri, A., Dubois, J.: Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recogn. Lett. 124, 82–90 (2019)

    Article  Google Scholar 

  7. Cai, R., et al.: Rehearsal-free domain continual face anti-spoofing: generalize more and forget less. arXiv preprint arXiv:2303.09914 (2023)

  8. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 241–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_15

    Chapter  Google Scholar 

  9. Chen, W., McDuff, D.: DeepPhys: video-based physiological measurement using convolutional attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 356–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_22

    Chapter  Google Scholar 

  10. De Haan, G., Jeanne, V.: Robust pulse rate from chrominance-based RPPG. IEEE Trans. Biomed. Eng. 60(10), 2878–2886 (2013)

    Article  Google Scholar 

  11. De Haan, G., Van Leest, A.: Improved motion robustness of remote-PPG by using the blood volume pulse signature. Physiol. Meas. 35(9), 1913 (2014)

    Article  Google Scholar 

  12. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  13. Du, J., Liu, S.Q., Zhang, B., Yuen, P.C.: Dual-bridging with adversarial noise generation for domain adaptive RPPG estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10355–10364 (2023)

    Google Scholar 

  14. Gao, Q., et al.: A unified continual learning framework with general parameter-efficient tuning. arXiv preprint arXiv:2303.10070 (2023)

  15. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211 (2013)

  16. Guo, Q., Zhang, C., Zhang, Y., Liu, H.: An efficient SVD-based method for image denoising. IEEE Trans. Circuits Syst. Video Technol. 26(5), 868–880 (2015)

    Article  Google Scholar 

  17. He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., Neubig, G.: Towards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366 (2021)

  18. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Lifelong learning via progressive distillation and retrospection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 452–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_27

    Chapter  Google Scholar 

  19. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 831–839 (2019)

    Google Scholar 

  20. Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. In: International Conference on Machine Learning, pp. 2790–2799. PMLR (2019)

    Google Scholar 

  21. Huang, W., et al.: Style projected clustering for domain generalized semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3061–3071 (2023)

    Google Scholar 

  22. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  23. Kim, S., Noci, L., Orvieto, A., Hofmann, T.: Achieving a better stability-plasticity trade-off via auxiliary networks in continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11930–11939 (2023)

    Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  25. Kirkpatrick, J.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  26. Lee, S., Ha, J., Zhang, D., Kim, G.: A neural Dirichlet process mixture model for task-free continual learning. arXiv preprint arXiv:2001.00689 (2020)

  27. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021)

  28. Li, K., et al.: Uniformer: unified transformer for efficient spatiotemporal representation learning. arXiv preprint arXiv:2201.04676 (2022)

  29. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  30. Liu, X., Fromm, J., Patel, S., McDuff, D.: Multi-task temporal shift attention networks for on-device contactless vitals measurement. Adv. Neural. Inf. Process. Syst. 33, 19400–19411 (2020)

    Google Scholar 

  31. Liu, X., Hill, B., Jiang, Z., Patel, S., McDuff, D.: EfficientPhys: enabling simple, fast and accurate camera-based cardiac measurement. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5008–5017 (2023)

    Google Scholar 

  32. Lu, H., Han, H., Zhou, S.K.: Dual-GAN: joint BVP and noise modeling for remote physiological measurement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12404–12413 (2021)

    Google Scholar 

  33. Lu, H., Yu, Z., Niu, X., Chen, Y.C.: Neuron structure modeling for generalizable remote physiological measurement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18589–18599 (2023)

    Google Scholar 

  34. Malepathirana, T., Senanayake, D., Halgamuge, S.: Napa-VQ: neighborhood-aware prototype augmentation with vector quantization for continual learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11674–11684 (2023)

    Google Scholar 

  35. McDuff, D.: Camera measurement of physiological vital signs. ACM Comput. Surv. 55(9), 1–40 (2023)

    Article  Google Scholar 

  36. Niu, X., Han, H., Shan, S., Chen, X.: VIPL-HR: a multi-modal database for pulse estimation from less-constrained face video. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018, Part V. LNCS, vol. 11365, pp. 562–576. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_36

    Chapter  Google Scholar 

  37. Niu, X., Shan, S., Han, H., Chen, X.: RhythmNet: end-to-end heart rate estimation from face via spatial-temporal representation. IEEE Trans. Image Process. 29, 2409–2423 (2019)

    Article  Google Scholar 

  38. Niu, X., Yu, Z., Han, H., Li, X., Shan, S., Zhao, G.: Video-based remote physiological measurement via cross-verified feature disentangling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part II. LNCS, vol. 12347, pp. 295–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_18

    Chapter  Google Scholar 

  39. Niu, X., et al.: Robust remote heart rate estimation from face utilizing spatial-temporal attention. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pp. 1–8. IEEE (2019)

    Google Scholar 

  40. Park, J., Han, D.J., Kim, S., Moon, J.: Test-time style shifting: handling arbitrary styles in domain generalization. arXiv preprint arXiv:2306.04911 (2023)

  41. Poh, M.Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 18(10), 10762–10774 (2010)

    Article  Google Scholar 

  42. Rajwade, A., Rangarajan, A., Banerjee, A.: Image denoising using the higher order singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 849–862 (2012)

    Article  Google Scholar 

  43. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: ICARL: Iicremental classifier and representation learning. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  44. Robins, A.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci. 7(2), 123–146 (1995)

    Article  Google Scholar 

  45. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)

  46. Serra, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. In: International Conference on Machine Learning, pp. 4548–4557. PMLR (2018)

    Google Scholar 

  47. Smith, J.S., et al.: Coda-prompt: continual decomposed attention-based prompting for rehearsal-free continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11909–11919 (2023)

    Google Scholar 

  48. Speth, J., Vance, N., Flynn, P., Czajka, A.: Non-contrastive unsupervised learning of physiological signals from video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14464–14474 (2023)

    Google Scholar 

  49. Stricker, R., Müller, S., Gross, H.M.: Non-contact video-based pulse rate measurement on a mobile service robot. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp. 1056–1062. IEEE (2014)

    Google Scholar 

  50. Tang, J., et al.: MMPD: multi-domain mobile video physiology dataset. arXiv preprint arXiv:2302.03840 (2023)

  51. Wang, W., Stuijk, S., De Haan, G.: Exploiting spatial redundancy of image sensor for motion robust RPPG. IEEE Trans. Biomed. Eng. 62(2), 415–425 (2014)

    Article  Google Scholar 

  52. Wang, Y., Huang, Z., Hong, X.: S-prompts learning with pre-trained transformers: An Occam’s razor for domain incremental learning. Adv. Neural. Inf. Process. Syst. 35, 5682–5695 (2022)

    Google Scholar 

  53. Wang, Z., et al.: Dualprompt: complementary prompting for rehearsal-free continual learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13686, pp. 631–648. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19809-0_36

    Chapter  Google Scholar 

  54. Wang, Z., et al.: Learning to prompt for continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149 (2022)

    Google Scholar 

  55. Xi, L., Chen, W., Zhao, C., Wu, X., Wang, J.: Image enhancement for remote photoplethysmography in a low-light environment. In: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), pp. 1–7. IEEE (2020)

    Google Scholar 

  56. Xue, M., Zhang, H., Song, J., Song, M.: Meta-attention for VIT-backed continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 150–159 (2022)

    Google Scholar 

  57. Yu, Z., Li, X., Zhao, G.: Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks. arXiv preprint arXiv:1905.02419 (2019)

  58. Yu, Z., Li, X., Zhao, G.: Facial-video-based physiological signal measurement: recent advances and affective applications. IEEE Signal Process. Mag. 38(6), 50–58 (2021)

    Article  Google Scholar 

  59. Yu, Z., Shen, Y., Shi, J., Zhao, H., Torr, P.H., Zhao, G.: Physformer: facial video-based physiological measurement with temporal difference transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4186–4196 (2022)

    Google Scholar 

  60. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  61. Zhu, F., Cheng, Z., Zhang, X.Y., Liu, C.l.: Class-incremental learning via dual augmentation. Adv. Neural. Inf. Process. Syst. 34, 14306–14318 (2021)

    Google Scholar 

  62. Zhu, F., Zhang, X.Y., Wang, C., Yin, F., Liu, C.L.: Prototype augmentation and self-supervision for incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5871–5880 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62172381).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Hu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 348 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Q., Chen, Y., Hu, Y. (2025). Continual Learning for Remote Physiological Measurement: Minimize Forgetting and Simplify Inference. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15094. Springer, Cham. https://doi.org/10.1007/978-3-031-72764-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72764-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72763-4

  • Online ISBN: 978-3-031-72764-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics