Skip to main content

Distractors-Immune Representation Learning with Cross-Modal Contrastive Regularization for Change Captioning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15101))

Included in the following conference series:

  • 332 Accesses

Abstract

Change captioning aims to succinctly describe the semantic change between a pair of similar images, while being immune to distractors (illumination and viewpoint changes). Under these distractors, unchanged objects often appear pseudo changes about location and scale, and certain objects might overlap others, resulting in perturbational and discrimination-degraded features between two images. However, most existing methods directly capture the difference between them, which risk obtaining error-prone difference features. In this paper, we propose a distractors-immune representation learning network that correlates the corresponding channels of two image representations and decorrelates different ones in a self-supervised manner, thus attaining a pair of stable image representations under distractors. Then, the model can better interact them to capture the reliable difference features for caption generation. To yield words based on the most related difference features, we further design a cross-modal contrastive regularization, which regularizes the cross-modal alignment by maximizing the contrastive alignment between the attended difference features and generated words. Extensive experiments show that our method outperforms the state-of-the-art methods on four public datasets. The code is available at https://github.com/tuyunbin/DIRL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, P., Fernando, B., Johnson, M., Gould, S.: SPICE: semantic propositional image caption evaluation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 382–398. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_24

    Chapter  Google Scholar 

  2. Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pp. 65–72 (2005)

    Google Scholar 

  3. Black, A., Shi, J., Fai, Y., Bui, T., Collomosse, J.: VIXEN: visual text comparison network for image difference captioning. In: AAAI (2024)

    Google Scholar 

  4. Chen, J., Li, L., Su, L., Zha, Z.j., Huang, Q.: Prompt-enhanced multiple instance learning for weakly supervised video anomaly detection. In: CVPR, pp. 18319–18329 (2024)

    Google Scholar 

  5. Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)

  6. Cho, J., Yoon, S., Kale, A., Dernoncourt, F., Bui, T., Bansal, M.: Fine-grained image captioning with clip reward. In: Findings of NAACL, pp. 517–527 (2022)

    Google Scholar 

  7. Guo, Z., Wang, T.J., Laaksonen, J.: CLIP4IDC: CLIP for image difference captioning. In: AACL, pp. 33–42 (2022)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  9. Hosseinzadeh, M., Wang, Y.: Image change captioning by learning from an auxiliary task. In: CVPR, pp. 2725–2734 (2021)

    Google Scholar 

  10. Hoxha, G., Chouaf, S., Melgani, F., Smara, Y.: Change captioning: a new paradigm for multitemporal remote sensing image analysis. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2022)

    Google Scholar 

  11. Huang, Q., et al.: Image difference captioning with instance-level fine-grained feature representation. IEEE Trans. Multimedia 24, 2004–2017 (2022)

    Google Scholar 

  12. Islam, M.M., Ho, N., Yang, X., Nagarajan, T., Torresani, L., Bertasius, G.: Video recap: recursive captioning of hour-long videos. In: CVPR (2024)

    Google Scholar 

  13. Jhamtani, H., Berg-Kirkpatrick, T.: Learning to describe differences between pairs of similar images. In: EMNLP, pp. 4024–4034 (2018)

    Google Scholar 

  14. Kim, H., Kim, J., Lee, H., Park, H., Kim, G.: Agnostic change captioning with cycle consistency. In: ICCV, pp. 2095–2104 (2021)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Li, L., Gao, X., Deng, J., Tu, Y., Zha, Z.J., Huang, Q.: Long short-term relation transformer with global gating for video captioning. IEEE Trans. Image Process. 31, 2726–2738 (2022)

    Article  Google Scholar 

  17. Li, M., Lin, B., Chen, Z., Lin, H., Liang, X., Chang, X.: Dynamic graph enhanced contrastive learning for chest x-ray report generation. In: CVPR, pp. 3334–3343 (2023)

    Google Scholar 

  18. Liao, Z., Huang, Q., Liang, Y., Fu, M., Cai, Y., Li, Q.: Scene graph with 3d information for change captioning. In: ACM MM, pp. 5074–5082 (2021)

    Google Scholar 

  19. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81 (2004)

    Google Scholar 

  20. Liu, C., Zhao, R., Chen, H., Zou, Z., Shi, Z.: Remote sensing image change captioning with dual-branch transformers: a new method and a large scale dataset. IEEE Trans. Geosci. Remote Sens. 60, 1–20 (2022)

    Google Scholar 

  21. Liu, X., et al.: Entity-enhanced adaptive reconstruction network for weakly supervised referring expression grounding. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 3003–3018 (2023)

    Google Scholar 

  22. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  23. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: ACL, pp. 311–318 (2002)

    Google Scholar 

  24. Park, D.H., Darrell, T., Rohrbach, A.: Robust change captioning. In: ICCV, pp. 4624–4633 (2019)

    Google Scholar 

  25. Qiu, Y., et al.: Describing and localizing multiple changes with transformers. In: ICCV, pp. 1971–1980 (2021)

    Google Scholar 

  26. Shi, X., Yang, X., Gu, J., Joty, S., Cai, J.: Finding it at another side: a viewpoint-adapted matching encoder for change captioning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 574–590. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_34

    Chapter  Google Scholar 

  27. Sun, Y., Qiu, Y., Khan, M., Matsuzawa, F., Iwata, K.: The STVchrono dataset: towards continuous change recognition in time. In: CVPR, pp. 14111–14120 (2024)

    Google Scholar 

  28. Sun, Y., et al.: Bidirectional difference locating and semantic consistency reasoning for change captioning. Int. J. Intell. Syst. 37(5), 2969–2987 (2022)

    Article  Google Scholar 

  29. Tan, H., Dernoncourt, F., Lin, Z., Bui, T., Bansal, M.: Expressing visual relationships via language. In: ACL, pp. 1873–1883 (2019)

    Google Scholar 

  30. Tang, W., Li, L., Liu, X., Jin, L., Tang, J., Li, Z.: Context disentangling and prototype inheriting for robust visual grounding. IEEE Trans. Pattern Anal. Mach. Intell. 46(5), 3213–3229 (2024)

    Article  Google Scholar 

  31. Tu, Y., Li, L., Su, L., Du, J., Lu, K., Huang, Q.: Viewpoint-adaptive representation disentanglement network for change captioning. IEEE Trans. Image Process. 32, 2620–2635 (2023)

    Article  Google Scholar 

  32. Tu, Y., et al.: I\(^2\)transformer: intra-and inter-relation embedding transformer for TV show captioning. IEEE Trans. Image Process. 31, 3565–3577 (2022)

    Article  Google Scholar 

  33. Tu, Y., Li, L., Su, L., Lu, K., Huang, Q.: Neighborhood contrastive transformer for change captioning. IEEE Trans. Multimedia 25, 9518–9529 (2023)

    Article  Google Scholar 

  34. Tu, Y., Li, L., Su, L., Zha, Z.J., Huang, Q.: Smart: syntax-calibrated multi-aspect relation transformer for change captioning. IEEE Trans. Pattern Anal. Mach. Intell. 46(7), 4926–4943 (2024)

    Article  Google Scholar 

  35. Tu, Y., Li, L., Su, L., Zha, Z.J., Yan, C., Huang, Q.: Self-supervised cross-view representation reconstruction for change captioning. In: ICCV, pp. 2805–2815 (2023)

    Google Scholar 

  36. Tu, Y., Li, L., Su, L., Zha, Z.J., Yan, C., Huang, Q.: Context-aware difference distilling for multi-change captioning. In: ACL (2024)

    Google Scholar 

  37. Tu, Y., Li, L., Yan, C., Gao, S., Yu, Z.: R\({\hat{\,}}\)3Net:relation-embedded representation reconstruction network for change captioning. In: EMNLP, pp. 9319–9329 (2021)

    Google Scholar 

  38. Tu, Y., et al.: Semantic relation-aware difference representation learning for change captioning. In: Findings of ACL, pp. 63–73 (2021)

    Google Scholar 

  39. Tu, Y., Zhou, C., Guo, J., Li, H., Gao, S., Yu, Z.: Relation-aware attention for video captioning via graph learning. Pattern Recogn. 136, 109204 (2023)

    Article  Google Scholar 

  40. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  41. Vedantam, R., Lawrence Zitnick, C., Parikh, D.: CIDEr: consensus-based image description evaluation. In: CVPR, pp. 4566–4575 (2015)

    Google Scholar 

  42. Wang, Q., Zhang, Y., Zheng, Y., Pan, P., Hua, X.S.: Disentangled representation learning for text-video retrieval. arXiv preprint arXiv:2203.07111 (2022)

  43. Xiao, J., Li, L., Lv, H., Wang, S., Huang, Q.: R&B: region and boundary aware zero-shot grounded text-to-image generation. ICLR (2024)

    Google Scholar 

  44. Yang, C.F., Tsai, Y.H.H., Fan, W.C., Salakhutdinov, R.R., Morency, L.P., Wang, F.: Paraphrasing is all you need for novel object captioning. In: NeurIPS, vol. 35, pp. 6492–6504 (2022)

    Google Scholar 

  45. Yao, L., Wang, W., Jin, Q.: Image difference captioning with pre-training and contrastive learning. In: AAAI (2022)

    Google Scholar 

  46. Yue, S., Tu, Y., Li, L., Gao, S., Yu, Z.: Multi-grained representation aggregating transformer with gating cycle for change captioning. ACM Trans. Multimedia Comput. Commun. Appl. (2024)

    Google Scholar 

  47. Yue, S., Tu, Y., Li, L., Yang, Y., Gao, S., Yu, Z.: I3N: intra- and inter-representation interaction network for change captioning. IEEE Trans. Multimedia 25, 8828–8841 (2023)

    Article  Google Scholar 

  48. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: ICML, pp. 12310–12320 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China: 62322211, 61931008, 62236008, 62336008, U21B2038, 62225207, Fundamental Research Funds for the Central Universities (E2ET1104), “Pionee” and “Leading Goose” R&D Program of Zhejiang Province (2024C01023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Li or Li Su .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1796 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tu, Y., Li, L., Su, L., Yan, C., Huang, Q. (2025). Distractors-Immune Representation Learning with Cross-Modal Contrastive Regularization for Change Captioning. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15101. Springer, Cham. https://doi.org/10.1007/978-3-031-72775-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72775-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72774-0

  • Online ISBN: 978-3-031-72775-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics