Abstract
The transparent formulation of explanation methods is essential for elucidating the predictions of neural networks, which are typically black-box models. Layer-wise Relevance Propagation (LRP) is a well-established method that transparently traces the flow of a model’s prediction backward through its architecture by backpropagating relevance scores. However, the conventional LRP does not fully consider the existence of skip connections, and thus its application to the widely used ResNet architecture has not been thoroughly explored. In this study, we extend LRP to ResNet models by introducing Relevance Splitting at points where the output from a skip connection converges with that from a residual block. Our formulation guarantees the conservation property throughout the process, thereby preserving the integrity of the generated explanations. To evaluate the effectiveness of our approach, we conduct experiments on ImageNet and the Caltech-UCSD Birds-200-2011 dataset. Our method achieves superior performance to that of baseline methods on standard evaluation metrics such as the Insertion-Deletion score while maintaining its conservation property. We will release our code for further research at https://5ei74r0.github.io/lrp-for-resnet.page/
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ali, A., Schnake, T., Eberle, O., et al.: XAI for transformers: better explanations through conservative propagation. In: ICML, pp. 435–451 (2022)
Arras, L., Montavon, G., Müller, R., et al.: Explaining recurrent neural network predictions in sentiment analysis. In: WASSA, pp. 159–168 (2017)
Bach, S., et al.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), 1–46 (2015)
Binder, A., et al.: Layer-wise relevance propagation for neural networks with local renormalization layers. In: ICANN, pp. 63–71 (2016)
Chefer, H., Gur, S., Wolf, L.: Transformer interpretability beyond attention visualization. In: CVPR, pp. 782–791 (2021)
Chen, S., Sun, P., Song, Y., Luo, P.: DiffusionDet: diffusion model for object detection. In: ICCV, pp. 19773–19786 (2023)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)
Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: ICCV, pp. 3429–3437 (2017)
Fukui, H., Hirakawa, T., et al.: Attention branch network: learning of attention mechanism for visual explanation. In: CVPR, pp. 10705–10714 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Iida, T., Komatsu, T., Kaneda, K., et al.: Visual explanation generation based on lambda attention branch networks. In: ACCV, pp. 3536–3551 (2022)
Itaya, H., et al.: Visual explanation using attention mechanism in actor-critic-based deep reinforcement learning. In: IJCNN, pp. 1–10 (2021)
Jacovi, A., Schuff, H., Adel, H., Vu, N.T., et al.: Neighboring words affect human interpretation of saliency explanations. In: ACL, pp. 11816–11833 (2023)
Kamath, A., Singh, M., LeCun, Y., Synnaeve, G., Misra, I., Carion, N.: MDETR - modulated detection for end-to-end multi-modal understanding. In: ICCV, pp. 1780–1790 (2021)
Krizhevsky, A., Nair, V., Hinton, G.: Learning multiple layers of features from tiny images. University of Toronto, Technical report (2009)
Lundberg, S., Lee, I.: A unified approach to interpreting model predictions. In: NeurIPS, pp. 4765–4774 (2017)
Madiaga: Artificial Intelligence Act (2023). https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI(2021)698792_EN.pdf
Molnar, C., Casalicchio, G., et al.: Interpretable machine learning – a brief history, state-of-the-art and challenges. In: ECML PKDD 2020 Workshops, pp. 417–431 (2020)
Montavon, G., Lapuschkin, S., et al.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)
Ogura, T., et al.: Alleviating the burden of labeling: sentence generation by attention branch encoder-decoder network. RA-L 5(4), 5945–5952 (2020)
Pan, B., Panda, R., Jiang, Y., et al.: IA-RED\(^2\): interpretability-aware redundancy reduction for vision transformers. In: NeurIPS, pp. 24898–24911 (2021)
Pan, D., Li, X., Zhu, D.: Explaining deep neural network models with adversarial gradient integration. In: IJCAI (2021)
Parekh, J., Mozharovskyi, P., d’Alché-Buc, F.: A framework to learn with interpretation. In: NeurIPS, pp. 24273–24285 (2021)
Petsiuk, V., Das, A., Saenko, K.: RISE: randomized input sampling for explanation of black-box models. In: BMVC, pp. 151–164 (2018)
Porwal, P., Pachade, S., Kokare, M., et al.: IDRiD: diabetic retinopathy – segmentation and grading challenge. Med. Image Anal. 59(101561) (2020)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763 (2021)
Reed, S., et al.: A generalist agent. In: TMLR 2022 (2022)
Ren, S., He, K., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. PAMI 39(6), 1137–1149 (2017)
Ribeiro, M., Singh, S., et al.: “Why Should I Trust You?”: explaining the predictions of any classifier. In: KDD, pp. 1135–1144 (2016)
Saeed, W., Omlin, C.: Explainable AI (XAI): a systematic meta-survey of current challenges and future opportunities. Knowl.-Based Syst. 263, 110273 (2023)
Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2017)
Selvaraju, R., et al.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)
Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black box: learning important features through propagating activation differences. arXiv preprint arXiv:1605.01713 (2016)
Shrikumar, A., et al.: Learning important features through propagating activation differences. In: ICML, vol. 70, pp. 3145–3153 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR, pp. 1–14 (2015)
Simonyan, K., Vedaldi, A., et al.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR, pp. 1–8 (2014)
Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: ICLR (Workshop Track) (2015)
Srinivas, S., Fleuret, F.: Full-gradient representation for neural network visualization. In: NeurIPS, vol. 32 (2019)
Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: ICML, pp. 3319–3328 (2017)
Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)
Wah, C., Branson, S., et al.: The Caltech-UCSD birds-200-2011 dataset. Technical report. CNS-TR-2011-001, California Institute of Technology (2011)
Wang, H., Wang, Z., et al.: Score-CAM: score-weighted visual explanations for convolutional neural networks. In: CVPR, pp. 24–25 (2020)
Wang, W., et al.: VisionLLM: large language model is also an open-ended decoder for vision-centric tasks. In: NeurIPS, pp. 61501–61513 (2023)
Zhou, X., Girdhar, R., Joulin, A., et al.: Detecting twenty-thousand classes using image-level supervision. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13669, pp. 350–368. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20077-9_21
Acknowledgements
This work was partially supported by JSPS KAKENHI Grant Number 23H03478, JST CREST, and NEDO.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Otsuki, S. et al. (2025). Layer-Wise Relevance Propagation with Conservation Property for ResNet. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15101. Springer, Cham. https://doi.org/10.1007/978-3-031-72775-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-72775-7_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72774-0
Online ISBN: 978-3-031-72775-7
eBook Packages: Computer ScienceComputer Science (R0)