Abstract
Predicting accurate future human poses from historically observed motions remains a challenging task due to the spatial-temporal complexity and continuity of motions. Previous historical-value methods typically interpret the motion as discrete consecutive frames, which neglects the continuous temporal dynamics and impedes the capability of handling incomplete observations (with missing values). In this paper, we propose a novel implicit Neural Representation method for the task of human Motion prediction, dubbed NeRMo, which represents the motion as a continuous function parameterized by a neural network. The core idea is to explicitly disentangle the spatial-temporal context and output the corresponding 3D skeleton positions. This separate and flexible treatment of space and time allows NeRMo to combine the following advantages. It extrapolates at arbitrary temporal locations; it can learn from both complete and incomplete observed past motions; it provides a unified framework for repairing missing values and forecasting future poses using a single trained model. In addition, we show that NeRMo exhibits compatibility with meta-learning methods, enabling it to effectively generalize to unseen time steps. Extensive experiments conducted on classical benchmarks have confirmed the superior repairing and prediction performance of our proposed method compared to existing historical-value baselines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aksan, E., Kaufmann, M., Cao, P., Hilliges, O.: A spatio-temporal transformer for 3D human motion prediction. In: Proceedings of the International Conference on 3D Vision, pp. 565–574 (2021)
Bertinetto, L., Henriques, J., Torr, P., Vedaldi, A.: Meta-learning with differentiable closed-form solvers. In: Proceedings of the International Conference on Learning Representations (2019)
Cai, Y., et al.: Learning progressive joint propagation for human motion prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 226–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_14
Cervantes, P., Sekikawa, Y., Sato, I., Shinoda, K.: Implicit neural representations for variable length human motion generation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13677, pp. 356–372. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19790-1_22
Chen, H., He, B., Wang, H., Ren, Y., Lim, S.N., Shrivastava, A.: NeRV: neural representations for videos. In: Proceedings of the Advances in Neural Information Processing Systems (2021)
Chen, S., Liu, B., Feng, C., Vallespi-Gonzalez, C., Wellington, C.: 3D point cloud processing and learning for autonomous driving: Impacting map creation, localization, and perception. IEEE Sig. Process. Mag. 38(1), 68–86 (2020)
Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local implicit image function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8628–8638 (2021)
Chen, Z., et al.: VideoINR: learning video implicit neural representation for continuous space-time super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2047–2057 (2022)
Cui, Q., Sun, H.: Towards accurate 3D human motion prediction from incomplete observations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4801–4810 (2021)
Cui, Q., Sun, H., Li, Y., Kong, Y.: A deep bi-directional attention network for human motion recovery. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 701–707 (2019)
Dang, L., Nie, Y., Long, C., Zhang, Q., Li, G.: MSR-GCN: multi-scale residual graph convolution networks for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11467–11476 (2021)
Dupont, E., Goliński, A., Alizadeh, M., Teh, Y.W., Doucet, A.: COIN: compression with implicit neural representations. arXiv preprint arXiv:2103.03123 (2021)
Dupont, E., Kim, H., Eslami, S., Rezende, D., Rosenbaum, D.: From data to functa: your data point is a function and you can treat it like one. In: Proceedings of the International Conference on Machine Learning, pp. 5694–5725 (2022)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the International Conference on Machine Learning, pp. 1126–1135 (2017)
Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4346–4354 (2015)
Gao, S., et al.: Implicit diffusion models for continuous super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10021–10030 (2023)
Gui, L.-Y., Wang, Y.-X., Liang, X., Moura, J.M.F.: Adversarial geometry-aware human motion prediction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 823–842. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_48
Guo, W., et al.: Back to MLP: a simple baseline for human motion prediction. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 4809–4819 (2023)
He, C., Saito, J., Zachary, J., Rushmeier, H., Zhou, Y.: NeMF: neural motion fields for kinematic animation. In: Proceedings of the Advances in Neural Information Processing Systems (2022)
Hu, S., Sun, H., Li, B., Wei, D., Li, W., Lu, J.: Fast adaptation for human pose estimation via meta-optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1792–1801 (2024)
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)
Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning on spatio-temporal graphs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5308–5317 (2016)
Kim, C., Lee, D., Kim, S., Cho, M., Han, W.S.: Generalizable implicit neural representations via instance pattern composers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11808–11817 (2023)
Lehrmann, A.M., Gehler, P.V., Nowozin, S.: Efficient nonlinear Markov models for human motion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1314–1321 (2014)
Li, M., Chen, S., Zhang, Z., Xie, L., Tian, Q., Zhang, Y.: Skeleton-parted graph scattering networks for 3D human motion prediction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision, ECCV 2022. LNCS, vol. 13666, pp. 18–36. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20068-7_2
Li, M., Chen, S., Zhao, Y., Zhang, Y., Wang, Y., Tian, Q.: Dynamic multiscale graph neural networks for 3D skeleton based human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 214–223 (2020)
Lohit, S., Anirudh, R., Turaga, P.: Recovering trajectories of unmarked joints in 3D human actions using latent space optimization. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2342–2351 (2021)
Ma, T., Nie, Y., Long, C., Zhang, Q., Li, G.: Progressively generating better initial guesses towards next stages for high-quality human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6437–6446 (2022)
Mao, W., Liu, M., Salzmann, M.: History repeats itself: human motion prediction via motion attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 474–489. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_28
Mao, W., Liu, M., Salzmann, M., Li, H.: Learning trajectory dependencies for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9489–9497 (2019)
Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2891–2900 (2017)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)
Rahaman, N., et al.: On the spectral bias of neural networks. In: Proceedings of the International Conference on Machine Learning, pp. 5301–5310 (2019)
Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: Proceedings of the International Conference on Learning Representations (2016)
Saadatnejad, S., et al.: A generic diffusion-based approach for 3D human pose prediction in the wild. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 8246–8253 (2023)
Sampieri, A., et al.: Pose forecasting in industrial human-robot collaboration. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13698, pp. 51–69. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19839-7_4
Sheridan, T.B.: Human-robot interaction: status and challenges. Hum. Fact. 58(4), 525–532 (2016)
Shue, J.R., Chan, E.R., Po, R., Ankner, Z., Wu, J., Wetzstein, G.: 3D neural field generation using triplane diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20875–20886 (2023)
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: Proceedings of the Advances in Neural Information Processing Systems (2020)
Skorokhodov, I., Ignatyev, S., Elhoseiny, M.: Adversarial generation of continuous images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)
Sun, X., Sun, H., Li, B., Wei, D., Li, W., Lu, J.: DeFeeNet: consecutive 3D human motion prediction with deviation feedback. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5527–5536 (2023)
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: Proceedings of the Advances in Neural Information Processing Systems (2020)
Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Proceedings of the Advances in Neural Information Processing Systems, vol. 30 (2017)
von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 614–631. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_37
Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: video forecasting by generating pose futures. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3332–3341 (2017)
Wang, K.C., et al.: NeMo: learning 3D neural motion fields from multiple video instances of the same action. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22129–22138 (2023)
Wang, Y., Liu, Z., Zuo, Z., Li, Z., Wang, L., Luo, X.: Trajectory planning and safety assessment of autonomous vehicles based on motion prediction and model predictive control. IEEE Trans. Veh. Technol. 68(9), 8546–8556 (2019)
Watson, D., Chan, W., Martin-Brualla, R., Ho, J., Tagliasacchi, A., Norouzi, M.: Novel view synthesis with diffusion models. In: International Conference on Learning Representations (2023)
Wei, D., et al.: Human joint kinematics diffusion-refinement for stochastic motion prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 6110–6118 (2023)
Wei, D., et al.: NeRM: learning neural representations for high-framerate human motion synthesis. In: Proceedings of the International Conference on Learning Representations (2024)
Woo, G., Liu, C., Sahoo, D., Kumar, A., Hoi, S.: Learning deep time-index models for time series forecasting. In: Proceedings of the International Conference on Machine Learning (2023)
Xu, C., Tan, R.T., Tan, Y., Chen, S., Wang, X., Wang, Y.: Auxiliary tasks benefit 3D skeleton-based human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9509–9520 (2023)
Yin, F., Liu, W., Huang, Z., Cheng, P., Chen, T., Yu, G.: Coordinates are not lonely-codebook prior helps implicit neural 3d representations. In: Proceedings of the Advances in Neural Information Processing Systems (2022)
Yu, S., et al.: Generating videos with dynamics-aware implicit generative adversarial networks. In: International Conference on Learning Representations (2022)
Acknowledgements.
This work was supported by the China Postdoctoral Foundation (NO. 2023M741711), and the National Natural Science Foundation of China (NO. 62176125, 61772272).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wei, D., Sun, H., Sun, X., Hu, S. (2025). NeRMo: Learning Implicit Neural Representations for 3D Human Motion Prediction. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15102. Springer, Cham. https://doi.org/10.1007/978-3-031-72784-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-72784-9_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72783-2
Online ISBN: 978-3-031-72784-9
eBook Packages: Computer ScienceComputer Science (R0)