Skip to main content

Stabilization of the Spectral Power Distribution of a Tunable Multichannel LED Lighting System

  • Conference paper
  • First Online:
Computational Color Imaging (CCIW 2024)

Abstract

The advancements in Light-Emitting Diodes (LEDs) have allowed spectrally tunable light sources to gain attention in many fields of research thanks to their ability to produce a specific light output. However, LED outputs can fluctuate with temperature, and aging components can lead to noticeable discrepancies in light characteristics. This study thoroughly examines the Telelumen Dittosizer light player LED panel to exemplify a commercially available device and the associated challenges in predicting and stabilizing its output. Then, we introduce an innovative algorithm aimed at addressing such a stabilization challenge, based on a straightforward characterization procedure along with an external spectrometer. The accuracy of the algorithm was validated with different inputs, achieving a \(\varDelta _{E,2000}\) lower than 0.5. Our findings demonstrate the ability to stabilize the spectral power distribution for a minimum of 30 min. The proposed algorithm is hardware-independent and adaptable to any combination of spectrally tunable light sources and spectrometers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afshari, S., Moynihan, L., Mishra, S.: An optimisation toolbox for multi-colour LED lighting. Light. Res. Technol. 50(3), 467–481 (2018). https://doi.org/10.1177/1477153516669881

    Article  Google Scholar 

  2. Chen, H., Zhou, X., Lin, S., Liu, J.: Luminous flux and CCT stabilization of white LED device with a bilevel driver. IEEE Photonics J. 10(1), 1–10 (2018). https://doi.org/10.1109/JPHOT.2018.2793965

    Article  Google Scholar 

  3. Chhajed, S., Xi, Y., Li, Y.L., Gessmann, T., Schubert, E.F.: Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes. J. Appl. Phys. 97(5), 054506 (2005). https://doi.org/10.1063/1.1852073

    Article  Google Scholar 

  4. Dalapati, P., Manik, N.B., Basu, A.N.: Influence of temperature on the performance of high power AlGaInP based red light emitting diode. Opt. Quant. Electron. 47(5), 1227–1238 (2015). https://doi.org/10.1007/s11082-014-9980-5

    Article  Google Scholar 

  5. Erbilgin, L., Blandet, T., Hoerter, N., Vergnes, N.: A simulator based on LED technology to study daylight on architectural scale models. In: Optics, Photonics and Digital Technologies for Imaging Applications VI, vol. 11353, pp. 350–358. SPIE (2020). https://doi.org/10.1117/12.2555068

  6. Finlayson, G., Mackiewicz, M., Hurlbert, A., Pearce, B., Crichton, S.: On calculating metamer sets for spectrally tunable LED illuminators. JOSA A 31(7), 1577–1587 (2014). https://doi.org/10.1364/JOSAA.31.001577

    Article  Google Scholar 

  7. Huang, Y., Hsiang, E.L., Deng, M.Y., Wu, S.T.: Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light: Sci. Appl. 9(1), 105 (2020). https://doi.org/10.1038/s41377-020-0341-9

    Article  Google Scholar 

  8. Jägerbrand, A.K.: New framework of sustainable indicators for outdoor LED (light emitting diodes) lighting and SSL (solid state lighting). Sustainability 7(1), 1028–1063 (2015). https://doi.org/10.3390/su7011028

    Article  Google Scholar 

  9. Königs, S., Mayr, S., Buchner, A.: LED-based light sources optimised for high colour rendition from an end users’ perspective. Ergonomics 64(5), 671–683 (2021). https://doi.org/10.1080/00140139.2020.1858187

    Article  Google Scholar 

  10. Li, K.H., Cheung, Y.F., Jin, W., Fu, W.Y.: InGaN RGB light-emitting diodes with monolithically integrated photodetectors for stabilizing color chromaticity. IEEE Trans. Ind. Electron. 67(6), 5154–5160 (2020). https://doi.org/10.1109/TIE.2019.2926038

    Article  Google Scholar 

  11. Llenas, A., Carreras, J.: Arbitrary spectral matching using multi-LED lighting systems. Opt. Eng. 58(3), 035105 (2019). https://doi.org/10.1117/1.OE.58.3.035105

    Article  Google Scholar 

  12. Long, X., et al.: A review on light-emitting diode based automotive headlamps. Renew. Sustain. Energy Rev. 41, 29–41 (2015). https://doi.org/10.1016/j.rser.2014.08.028

    Article  Google Scholar 

  13. Meneghini, M., Trevisanello, L.R., Meneghesso, G., Zanoni, E.: A review on the reliability of GaN-based LEDs. IEEE Trans. Dev. Mater. Reliab. 8(2), 323–331 (2008). https://doi.org/10.1109/TDMR.2008.921527

    Article  Google Scholar 

  14. Mihara, Y., Hamada, K., Phuangsuwan, C., Mitsuo, I., Mizokami, Y.: Change of color appearance of invariant psychophysical color by the chromatic adaptation to illumination. J. Color Sci. Assoc. Jpn. 41(3+), 58–59 (2017). https://doi.org/10.15048/jcsaj.41.3__58

    Article  Google Scholar 

  15. Montoya, F.G., Peña-García, A., Juaidi, A., Manzano-Agugliaro, F.: Indoor lighting techniques: an overview of evolution and new trends for energy saving. Energy Build. 140, 50–60 (2017). https://doi.org/10.1016/j.enbuild.2017.01.028

    Article  Google Scholar 

  16. Paisnik, K., Rang, G., Rang, T.: Life-time characterization of LEDs. Est. J. Eng. 17(3), 241 (2011). https://doi.org/10.3176/eng.2011.3.05

    Article  Google Scholar 

  17. Qu, X., Wong, S.C., Tse, C.K.: Temperature measurement technique for stabilizing the light output of RGB LED lamps. IEEE Trans. Instrum. Meas. 59(3), 661–670 (2010). https://doi.org/10.1109/TIM.2009.2025983

    Article  Google Scholar 

  18. Radsamrong, A.: Optimized light sources for enhancing color discrimination in people with low vision. Chulalongkorn University Theses and Dissertations (Chula ETD) (2019). https://doi.org/10.58837/CHULA.THE.2019.2

  19. Rammohan, A., Ramesh, C.K.: A review on effect of thermal factors on performance of high power light emitting diode (HPLED). J. Eng. Sci. Technol. Rev. 9(4), 165–176 (2016). https://doi.org/10.25103/jestr.094.24

    Article  Google Scholar 

  20. Smagina, A., Ershov, E., Grigoryev, A.: Multiple light source dataset for colour research. In: 12th SPIE International Conference on Machine Vision (ICMV 2019), vol. 11433, pp. 635–642 (2020). https://doi.org/10.1117/12.2559491

  21. Smet, K.A.G.: Tutorial: the LuxPy Python toolbox for lighting and color science. Leukos 16(3), 179–201 (2020). https://doi.org/10.1080/15502724.2018.1518717

    Article  Google Scholar 

  22. Soltic, S., Chalmers, A.: Differential evolution for the optimisation of multi-band white LED light sources. Light. Res. Technol. 44(2), 224–237 (2012). https://doi.org/10.1177/1477153511409339

    Article  Google Scholar 

  23. Wang, H., Cuijpers, R., Vogels, I., Ronnier Luo, M., Heynderickx, I., Zheng, Z.: Optimising the illumination spectrum for tissue texture visibility. Light. Res. Technol. 50(5), 757–771 (2018). https://doi.org/10.1177/1477153517690799

    Article  Google Scholar 

  24. Wang, Q., Xu, H., Zhang, F., Wang, Z.: Influence of color temperature on comfort and preference for LED indoor lighting. Optik 129, 21–29 (2017). https://doi.org/10.1016/j.ijleo.2016.10.049

    Article  Google Scholar 

  25. Yamada, M., Stober, K.: Adoption of light-emitting diodes in common lighting applications. Technical report DOE/EE-1236 (2015). https://doi.org/10.2172/1374108

  26. Zissis, G., Bertoldi, P., Ribeiro, S.T.: Update on the status of LED-lighting world market since 2018 (2021). https://doi.org/10.2760/759859

Download references

Acknowledgements

This work has been funded by a public grant from the French National Research Agency (ANR) under the “France 2030” investment plan, which has the reference EUR MANUTECH SLEIGHT - ANR-17-EURE-0026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofiane Vernet .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vernet, S., Nakayama, R., Dinet, É., Trémeau, A., Colantoni, P. (2025). Stabilization of the Spectral Power Distribution of a Tunable Multichannel LED Lighting System. In: Schettini, R., Trémeau, A., Tominaga, S., Bianco, S., Buzzelli, M. (eds) Computational Color Imaging. CCIW 2024. Lecture Notes in Computer Science, vol 15193. Springer, Cham. https://doi.org/10.1007/978-3-031-72845-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72845-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72844-0

  • Online ISBN: 978-3-031-72845-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics