Abstract
Anomaly synthesis strategies can effectively enhance unsupervised anomaly detection. However, existing strategies have limitations in the coverage and controllability of anomaly synthesis, particularly for weak defects that are very similar to normal regions. In this paper, we propose Global and Local Anomaly co-Synthesis Strategy (GLASS), a novel unified framework designed to synthesize a broader coverage of anomalies under the manifold and hypersphere distribution constraints of Global Anomaly Synthesis (GAS) at the feature level and Local Anomaly Synthesis (LAS) at the image level. Our method synthesizes near-in-distribution anomalies in a controllable way using Gaussian noise guided by gradient ascent and truncated projection. GLASS achieves state-of-the-art results on the MVTec AD (detection AUROC of 99.9%), VisA, and MPDD datasets and excels in weak defect detection. The effectiveness and efficiency have been further validated in industrial applications for woven fabric defect detection. The code and dataset are available at: https://github.com/cqylunlun/GLASS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39
Bae, J., Lee, J.H., Kim, S.: PNI: industrial anomaly detection using position and neighborhood information. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6373–6383 (2023)
Batzner, K., Heckler, L., König, R.: EfficientAD: accurate visual anomaly detection at millisecond-level latencies. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 128–138 (2024)
Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: MVTec AD–a comprehensive real-world dataset for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9592–9600 (2019)
Cao, Y., Xu, X., Liu, Z., Shen, W.: Collaborative discrepancy optimization for reliable image anomaly localization. IEEE Trans. Industr. Inf. 19(11), 10674–10683 (2023)
Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3606–3613 (2014)
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition workshops, pp. 702–703 (2020)
Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9737–9746 (2022)
Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. In: International Conference on Learning Representations (2017)
Goyal, S., Raghunathan, A., Jain, M., Simhadri, H.V., Jain, P.: DROCC: deep robust one-class classification. In: International Conference on Machine Learning, vol. 119, pp. 3711–3721. PMLR (2020)
Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: real-time unsupervised anomaly detection with localization via conditional normalizing flows. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 98–107 (2022)
Hou, J., Zhang, Y., Zhong, Q., Xie, D., Pu, S., Zhou, H.: Divide-and-assemble: learning block-wise memory for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8791–8800 (2021)
Hyun, J., Kim, S., Jeon, G., Kim, S.H., Bae, K., Kang, B.J.: Reconpatch: contrastive patch representation learning for industrial anomaly detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2052–2061 (2024)
Jezek, S., Jonak, M., Burget, R., Dvorak, P., Skotak, M.: Deep learning-based defect detection of metal parts: evaluating current methods in complex conditions. In: International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 66–71. IEEE (2021)
Lee, S., Lee, S., Song, B.C.: CFA: coupled-hypersphere-based feature adaptation for target-oriented anomaly localization. IEEE Access 10, 78446–78454 (2022)
Lei, J., Hu, X., Wang, Y., Liu, D.: Pyramidflow: high-resolution defect contrastive localization using pyramid normalizing flow. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14143–14152 (2023)
Li, C.L., Sohn, K., Yoon, J., Pfister, T.: Cutpaste: Self-supervised learning for anomaly detection and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9664–9674 (2021)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, J., et al.: Deep industrial image anomaly detection: a survey. Mach. Intell. Res. 21(1), 104–135 (2024). https://doi.org/10.1007/s11633-023-1459-z
Liu, Z., Zhou, Y., Xu, Y., Wang, Z.: Simplenet: a simple network for image anomaly detection and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20402–20411 (2023)
Pless, R., Souvenir, R.: A survey of manifold learning for images. IPSJ Trans. Comput. Vis. Appl. 1, 83–94 (2009)
Reiss, T., Cohen, N., Bergman, L., Hoshen, Y.: Panda: adapting pretrained features for anomaly detection and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2806–2814 (2021)
Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., Gehler, P.: Towards total recall in industrial anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14318–14328 (2022)
Ruff, L., et al.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402. PMLR (2018)
Salehi, M., Sadjadi, N., Baselizadeh, S., Rohban, M.H., Rabiee, H.R.: Multiresolution knowledge distillation for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14902–14912 (2021)
Schlüter, H.M., Tan, J., Hou, B., Kainz, B.: Natural synthetic anomalies for self-supervised anomaly detection and localization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV. LNCS, vol. 13691, pp. 474–489. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_27
Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)
Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 761–769 (2016)
Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54, 45–66 (2004)
Tien, T.D., et al.: Revisiting reverse distillation for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24511–24520 (2023)
Xiao, F., Sun, R., Fan, J.: Restricted generative projection for one-class classification and anomaly detection. arXiv preprint arXiv:2307.04097 (2023)
Yang, M., Wu, P., Feng, H.: MemSeg: a semi-supervised method for image surface defect detection using differences and commonalities. Eng. Appl. Artif. Intell. 119, 105835 (2023)
Yao, X., Li, R., Zhang, J., Sun, J., Zhang, C.: Explicit boundary guided semi-push-pull contrastive learning for supervised anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24490–24499 (2023)
You, Z., et al.: A unified model for multi-class anomaly detection. In: Advance in Neural Information Processing System, vol. 35, pp. 4571–4584 (2022)
Yu, J., et al.: Fastflow: unsupervised anomaly detection and localization via 2D normalizing flows. arXiv preprint arXiv:2111.07677 (2021)
Zavrtanik, V., Kristan, M., Skočaj, D.: DRAEM-a discriminatively trained reconstruction embedding for surface anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8330–8339 (2021)
Zavrtanik, V., Kristan, M., Skočaj, D.: Reconstruction by inpainting for visual anomaly detection. Pattern Recogn. 112, 107706 (2021)
Zavrtanik, V., Kristan, M., Skočaj, D.: DSR-a dual subspace re-projection network for surface anomaly detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13691, pp. 539–554. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_31
Zhang, X., Li, S., Li, X., Huang, P., Shan, J., Chen, T.: DeSTSeg: segmentation guided denoising student-teacher for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3914–3923 (2023)
Zhou, Y.: Rethinking reconstruction autoencoder-based out-of-distribution detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7379–7387 (2022)
Zou, Y., Jeong, J., Pemula, L., Zhang, D., Dabeer, O.: Spot-the-difference self-supervised pre-training for anomaly detection and segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13690, pp. 392–408. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20056-4_23
Acknowledgements
This work is supported by the National Natural Science Foundation of China under Grant 62303458, Grant 62303461 and Grant U21A20482. This work is also supported by the Beijing Municipal Natural Science Foundation of China under Grant L243018. In addition, we would like to express our gratitude to WEIQIAO Textile for collecting the original images used in the WFDD dataset.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, Q., Luo, H., Lv, C., Zhang, Z. (2025). A Unified Anomaly Synthesis Strategy with Gradient Ascent for Industrial Anomaly Detection and Localization. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15125. Springer, Cham. https://doi.org/10.1007/978-3-031-72855-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-72855-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72854-9
Online ISBN: 978-3-031-72855-6
eBook Packages: Computer ScienceComputer Science (R0)