Skip to main content

Semi-supervised Teacher-Reference-Student Architecture for Action Quality Assessment

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Existing action quality assessment (AQA) methods often require a large number of label annotations for fully supervised learning, which are laborious and expensive. In practice, the labeled data are difficult to obtain because the AQA annotation process requires domain-specific expertise. In this paper, we propose a novel semi-supervised method, which can be utilized for better assessment of the AQA task by exploiting a large amount of unlabeled data and a small portion of labeled data. Differing from the traditional teacher-student network, we propose a teacher-reference-student architecture to learn both unlabeled and labeled data, where the teacher network and the reference network are used to generate pseudo-labels for unlabeled data to supervise the student network. Specifically, the teacher predicts pseudo-labels by capturing high-level features of unlabeled data. The reference network provides adequate supervision of the student network by referring to additional action information. Moreover, we introduce confidence memory to improve the reliability of pseudo-labels by storing the most accurate ever output of the teacher network and reference network. To validate our method, we conduct extensive experiments on three AQA benchmark datasets. Experimental results show that our method achieves significant improvements and outperforms existing semi-supervised AQA methods. Our source code is available at https://github.com/wuli55555/TRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, Q., Qi, M., Ma, H.: Multi-stage contrastive regression for action quality assessment. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4110–4114 (2024)

    Google Scholar 

  2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  3. Bai, Y., et al.: Action quality assessment with temporal parsing transformer. In: Proceedings of the European Conference on Computer Vision, pp. 422–438 (2022)

    Google Scholar 

  4. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: MixMatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems, vol. 32, pp. 5050–5060 (2019)

    Google Scholar 

  5. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4724–4733 (2017)

    Google Scholar 

  6. Doughty, H., Damen, D., Mayol-Cuevas, W.: Who’s better? Who’s best? Pairwise deep ranking for skill determination. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6057–6066 (2018)

    Google Scholar 

  7. Drucker, H., Burges, C.J., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems, vol. 9, pp. 155–161 (1996)

    Google Scholar 

  8. Gao, Y., et al.: JHU-ISI gesture and skill assessment working set (JIGSAWS): a surgical activity dataset for human motion modeling. In: Proceedings of the Modeling and Monitoring of Computer Assisted Interventions, vol. 3, p. 3 (2014)

    Google Scholar 

  9. Gedamu, K., Ji, Y., Yang, Y., Shao, J., Shen, H.T.: Fine-grained spatio-temporal parsing network for action quality assessment. IEEE Trans. Image Process. 32, 6386–6400 (2023)

    Article  Google Scholar 

  10. He, Y., Zhu, C., Wang, J., Savvides, M., Zhang, X.: Bounding box regression with uncertainty for accurate object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2888–2897 (2019)

    Google Scholar 

  11. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)

  12. Hou, P., Geng, X., Huo, Z.W., Lv, J.Q.: Semi-supervised adaptive label distribution learning for facial age estimation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, pp. 2015–2021 (2017)

    Google Scholar 

  13. Jeong, J., Lee, S., Kim, J., Kwak, N.: Consistency-based semi-supervised learning for object detection. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  14. Kay, W., et al.: arXiv preprint arXiv:1705.06950 (2017)

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Lee, Y., et al.: Localization uncertainty estimation for anchor-free object detection. In: Proceedings of the European Conference on Computer Vision Workshops, pp. 27–42 (2023)

    Google Scholar 

  17. Li, C., Lee, G.H.: Generating multiple hypotheses for 3D human pose estimation with mixture density network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9879–9887 (2019)

    Google Scholar 

  18. Li, J., et al.: Human pose regression with residual log-likelihood estimation. In: Proceedings of IEEE/CVF International Conference on Computer Vision, pp. 11005–11014 (2021)

    Google Scholar 

  19. Li, M., Zhang, H.B., Lei, Q., Fan, Z., Liu, J., Du, J.X.: Pairwise contrastive learning network for action quality assessment. In: Proceedings of the European Conference on Computer Vision, pp. 457–473 (2022)

    Google Scholar 

  20. Liu, Y., et al.: From synthetic to real: Image dehazing collaborating with unlabeled real data. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 50–58 (2021)

    Google Scholar 

  21. Liu, Y.C., Ma, C.Y., Kira, Z.: Unbiased teacher v2: semi-supervised object detection for anchor-free and anchor-based detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9809–9818 (2022)

    Google Scholar 

  22. Liu, Y., Tian, Y., Chen, Y., Liu, F., Belagiannis, V., Carneiro, G.: Perturbed and strict mean teachers for semi-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4248–4257 (2022)

    Google Scholar 

  23. Mi, P., et al.: Active teacher for semi-supervised object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14462–14471 (2022)

    Google Scholar 

  24. Miyato, T., Maeda, S.I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Google Scholar 

  25. Pan, J.H., Gao, J., Zheng, W.S.: Action assessment by joint relation graphs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6331–6340 (2019)

    Google Scholar 

  26. Parmar, P., Morris, B.T.: Learning to score Olympic events. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28 (2017)

    Google Scholar 

  27. Parmar, P., Morris, B.T.: What and how well you performed? A multitask learning approach to action quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 304–313 (2019)

    Google Scholar 

  28. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing System 32, 8026–8037 (2019)

    Google Scholar 

  29. Pirsiavash, H., Vondrick, C., Torralba, A.: Assessing the quality of actions. In: Proceedings of the European Conference on Computer Vision, pp. 556–571 (2014)

    Google Scholar 

  30. Qi, M., Qin, J., Li, A., Wang, Y., Luo, J., Van Gool, L.: stagNet: an attentive semantic RNN for group activity recognition. In: Proceedings of the European Conference on Computer Vision, pp. 101–117 (2018)

    Google Scholar 

  31. Qi, M., Qin, J., Yang, Y., Wang, Y., Luo, J.: Semantics-aware spatial-temporal binaries for cross-modal video retrieval. IEEE Trans. Image Process. 30, 2989–3004 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Qi, M., Wang, Y., Li, A., Luo, J.: STC-GAN: spatio-temporally coupled generative adversarial networks for predictive scene parsing. IEEE Trans. Image Process. 29, 5420–5430 (2020)

    Article  MATH  Google Scholar 

  33. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems, vol. 33, pp. 596–608 (2020)

    Google Scholar 

  34. Tang, Y., et al.: Uncertainty-aware score distribution learning for action quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9836–9845 (2020)

    Google Scholar 

  35. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30, pp. 1195–1204 (2017)

    Google Scholar 

  36. Tolstikhin, I.O., et al.: MLP-Mixer: an all-MLP architecture for vision. In: Advances in Neural Information Processing Systems, vol. 34, pp. 24261–24272 (2021)

    Google Scholar 

  37. Wang, X., et al.: Consistent-teacher: towards reducing inconsistent pseudo-targets in semi-supervised object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3240–3249 (2023)

    Google Scholar 

  38. Wang, Y., et al.: Semi-supervised semantic segmentation using unreliable pseudo-labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4238–4247 (2022)

    Google Scholar 

  39. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves ImageNet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2020)

    Google Scholar 

  40. Yu, X., Rao, Y., Zhao, W., Lu, J., Zhou, J.: Group-aware contrastive regression for action quality assessment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7899–7908 (2021)

    Google Scholar 

  41. Yun, W., Qi, M., Wang, C., Ma, H.: Weakly-supervised temporal action localization by inferring salient snippet-feature. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 6908–6916 (2024)

    Google Scholar 

  42. Zeng, L.A., et al.: Hybrid dynamic-static context-aware attention network for action assessment in long videos. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2526–2534 (2020)

    Google Scholar 

  43. Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L.: S4l: Self-supervised semi-supervised learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1476–1485 (2019)

    Google Scholar 

  44. Zhang, B., et al.: FlexMatch: boosting semi-supervised learning with curriculum pseudo labeling. In: Advances in Neural Information Processing Systems, vol. 34, pp. 18408–18419 (2021)

    Google Scholar 

  45. Zhang, S.J., Pan, J.H., Gao, J., Zheng, W.S.: Semi-supervised action quality assessment with self-supervised segment feature recovery. IEEE Trans. Circuits Syst. Video Technol. 32(9), 6017–6028 (2022)

    Article  MATH  Google Scholar 

  46. Zhao, Z., Zhou, L., Duan, Y., Wang, L., Qi, L., Shi, Y.: DC-SSL: addressing mismatched class distribution in semi-supervised learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9747–9755 (2022)

    Google Scholar 

  47. Zhou, K., Ma, Y., Shum, H.P.H., Liang, X.: Hierarchical graph convolutional networks for action quality assessment. IEEE Trans. Circuits Syst. Video Technol. 33(12), 7749–7763 (2023)

    Article  MATH  Google Scholar 

  48. Zhou, Z.H., Li, M.: Semi-supervised regression with co-training. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp. 908–913 (2005)

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Funds for the Innovation Research Group Project of the NSFC under Grant 61921003, the NSFC Project under Grant 62202063, Beijing Natural Science Foundation (No.L243027) and 111 Project under Grant B18008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wulian Yun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yun, W., Qi, M., Peng, F., Ma, H. (2025). Semi-supervised Teacher-Reference-Student Architecture for Action Quality Assessment. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15132. Springer, Cham. https://doi.org/10.1007/978-3-031-72904-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72904-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72903-4

  • Online ISBN: 978-3-031-72904-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics