Skip to main content

Region-Native Visual Tokenization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

We explore an innovative region-based visual token representation and present the REgion-native AutoencoDER (Reader). In contrast to the majority of previous methods, which represent each image as a grid-shaped tokens map, Reader perceives each image into sequential region-based tokens, with each token corresponding to an object or one part of an object in the image. Specifically, Reader comprises both an encoder and a decoder. The encoder can partition each image into an adaptive number of arbitrary-shaped regions and encode each region into a token. Subsequently, the decoder utilizes this adaptive-length token sequence to reconstruct the original image. Experimental results demonstrate that such region-based token representation possesses two main notable characteristics. Firstly, it achieves highly efficient image encoding. Reader can adaptively use more regions to represent complex areas and fewer regions in simpler ones, thus avoiding information redundancy. Consequently, it achieves superior reconstruction fidelity compared to previous methods, despite using significantly fewer tokens for each image. Secondly, the region-based manner enables manipulation on a local region without causing global changes. As a result, Reader inherently supports diverse image editing operations, including erasing, adding, replacing, and modifying shapes on the objects, and achieves excellent performance in the image editing benchmark of smile transferring. Code is provided at https://github.com/MengyuWang826/Reader.git.

M. Wang and Y. Huang—Internship at BAAI.

Y. Huang—Internship at Skywork AI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: CVPR, pp. 6077–6086 (2018)

    Google Scholar 

  2. Binkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. In: ICLR. OpenReview.net (2018)

    Google Scholar 

  3. Brooks, T., Holynski, A., Efros, A.A.: InstructPix2Pix: learning to follow image editing instructions. In: CVPR, pp. 18392–18402. IEEE (2023)

    Google Scholar 

  4. Burgess, C.P., et al.: MONet: unsupervised scene decomposition and representation. CoRR arXiv:1901.11390 (2019)

  5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  6. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: CVPR, pp. 1290–1299 (2022)

    Google Scholar 

  7. Cheng, B., Schwing, A.G., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) NeurIPS, pp. 17864–17875 (2021)

    Google Scholar 

  8. Choi, Y., Choi, M., Kim, M., Ha, J., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR, pp. 8789–8797. Computer Vision Foundation / IEEE Computer Society (2018)

    Google Scholar 

  9. Collins, E., Bala, R., Price, B., Süsstrunk, S.: Editing in style: uncovering the local semantics of GANs. In: CVPR, pp. 5770–5779. Computer Vision Foundation / IEEE (2020)

    Google Scholar 

  10. Couairon, G., Verbeek, J., Schwenk, H., Cord, M.: DiffEdit: diffusion-based semantic image editing with mask guidance. In: ICLR. OpenReview.net (2023)

    Google Scholar 

  11. Crowson, K., et al.: VQGAN-CLIP: open domain image generation and editing with natural language guidance. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV, pp. 88–105. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_6

  12. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: CVPR, pp. 4690–4699. Computer Vision Foundation / IEEE (2019)

    Google Scholar 

  13. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) NAACL-HLT, pp. 4171–4186. Association for Computational Linguistics (2019)

    Google Scholar 

  14. Ding, H., Liu, C., He, S., Jiang, X., Loy, C.C.: MeViS: a large-scale benchmark for video segmentation with motion expressions. In: ICCV (2023)

    Google Scholar 

  15. Dosovitskiy, A., et al.: An image is worth \(16\times 16\) words: transformers for image recognition at scale. In: ICLR. OpenReview.net (2021)

    Google Scholar 

  16. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: CVPR, pp. 12873–12883. Computer Vision Foundation / IEEE (2021)

    Google Scholar 

  17. Fernandez, P., Couairon, G., Jégou, H., Douze, M., Furon, T.: The stable signature: rooting watermarks in latent diffusion models. CoRR arXiv:2303.15435 (2023)

  18. Gafni, O., Polyak, A., Ashual, O., Sheynin, S., Parikh, D., Taigman, Y.: Make-a-scene: scene-based text-to-image generation with human priors. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV, pp. 89–106. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19784-0_6

  19. Goel, V., et al.: Pair-diffusion: object-level image editing with structure-and-appearance paired diffusion models. CoRR arXiv:2303.17546 (2023)

  20. Gondal, M.W., et al.: On the transfer of inductive bias from simulation to the real world: a new disentanglement dataset. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) NeurIPS, pp. 15714–15725 (2019)

    Google Scholar 

  21. Goodfellow, I.J., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) NeurIPS (2014)

    Google Scholar 

  22. Härkönen, E., Hertzmann, A., Lehtinen, J., Paris, S.: GANSpace: discovering interpretable GAN controls. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) NeurIPS (2020)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE Computer Society (2016)

    Google Scholar 

  24. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) NeurIPS, pp. 6626–6637 (2017)

    Google Scholar 

  25. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) NeurIPS (2020)

    Google Scholar 

  26. Horé, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: ICPR, pp. 2366–2369. IEEE Computer Society (2010)

    Google Scholar 

  27. Huang, M., Mao, Z., Chen, Z., Zhang, Y.: Towards accurate image coding: improved autoregressive image generation with dynamic vector quantization. In: CVPR, pp. 22596–22605 (2023)

    Google Scholar 

  28. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 5967–5976. IEEE Computer Society (2017)

    Google Scholar 

  29. Kim, H., Mnih, A.: Disentangling by factorising. In: Dy, J.G., Krause, A. (eds.) ICML. Proceedings of Machine Learning Research, vol. 80, pp. 2654–2663. PMLR (2018)

    Google Scholar 

  30. Kirillov, A., et al.: Segment anything. CoRR arXiv:2304.02643 (2023)

  31. Lee, C., Liu, Z., Wu, L., Luo, P.: MaskGAN: towards diverse and interactive facial image manipulation. In: CVPR, pp. 5548–5557. Computer Vision Foundation / IEEE (2020)

    Google Scholar 

  32. Lee, D., Kim, C., Kim, S., Cho, M., Han, W.: Autoregressive image generation using residual quantization. In: CVPR, pp. 11513–11522. IEEE (2022). https://doi.org/10.1109/CVPR52688.2022.01123

  33. Li, Y., Mao, H., Girshick, R., He, K.: Exploring plain vision transformer backbones for object detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV, pp. 280–296. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20077-9_17

  34. Ling, H., Kreis, K., Li, D., Kim, S.W., Torralba, A., Fidler, S.: EditGAN: high-precision semantic image editing. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) NeurIPS, pp. 16331–16345 (2021)

    Google Scholar 

  35. Liu, C., Ding, H., Jiang, X.: GRES: generalized referring expression segmentation. In: CVPR (2023)

    Google Scholar 

  36. Liu, C., Jiang, X., Ding, H.: PrimitiveNet: decomposing the global constraints for referring segmentation. Vis. Intell. 2(1), 16 (2024)

    Article  MATH  Google Scholar 

  37. Locatello, F., et al.: Object-centric learning with slot attention. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) NeurIPS (2020)

    Google Scholar 

  38. Ning, J., et al.: All in tokens: unifying output space of visual tasks via soft token. In: ICCV, pp. 19900–19910 (2023)

    Google Scholar 

  39. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. In: Guyon, I., et al. (eds.) NeurIPS, pp. 6306–6315 (2017)

    Google Scholar 

  40. Pan, X., Tewari, A., Leimkühler, T., Liu, L., Meka, A., Theobalt, C.: Drag your GAN: interactive point-based manipulation on the generative image manifold. In: Brunvand, E., Sheffer, A., Wimmer, M. (eds.) SIGGRAPH, pp. 78:1–78:11. ACM (2023)

    Google Scholar 

  41. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  42. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  43. Reed, S.E., Zhang, Y., Zhang, Y., Lee, H.: Deep visual analogy-making. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) NeurIPS, pp. 1252–1260 (2015)

    Google Scholar 

  44. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS, vol. 28 (2015)

    Google Scholar 

  45. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR, pp. 10674–10685. IEEE (2022)

    Google Scholar 

  46. Shen, Y., Yang, C., Tang, X., Zhou, B.: InterfaceGAN: interpreting the disentangled face representation learned by GANs. IEEE TPAMI 44(4), 2004–2018 (2022)

    Article  MATH  Google Scholar 

  47. Shuai, X., Ding, H., Ma, X., Tu, R., Jiang, Y.G., Tao, D.: A survey of multimodal-guided image editing with text-to-image diffusion models. arXiv preprint arXiv:2406.14555 (2024)

  48. Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: Bach, F.R., Blei, D.M. (eds.) ICML. JMLR Workshop and Conference Proceedings, vol. 37, pp. 2256–2265. JMLR.org (2015)

    Google Scholar 

  49. Tov, O., Alaluf, Y., Nitzan, Y., Patashnik, O., Cohen-Or, D.: Designing an encoder for styleGAN image manipulation. ACM TOG 40(4), 1–14 (2021)

    Article  Google Scholar 

  50. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  51. Wu, B., et al.: Visual transformers: token-based image representation and processing for computer vision. arXiv preprint arXiv:2006.03677 (2020)

  52. Wu, R., Zhang, G., Lu, S., Chen, T.: Cascade EF-GAN: progressive facial expression editing with local focuses. In: CVPR, pp. 5020–5029. Computer Vision Foundation / IEEE (2020)

    Google Scholar 

  53. Xu, J., et al.: GroupViT: semantic segmentation emerges from text supervision. In: CVPR, pp. 18113–18123. IEEE (2022)

    Google Scholar 

  54. Yang, B., et al.: Paint by example: exemplar-based image editing with diffusion models. In: CVPR, pp. 18381–18391. IEEE (2023). https://doi.org/10.1109/CVPR52729.2023.01763

  55. Yang, T., Wang, Y., Lu, Y., Zheng, N.: Visual concepts tokenization. In: NeurIPS (2022)

    Google Scholar 

  56. Yu, J., et al.: Vector-quantized image modeling with improved VQGAN. In: ICLR. OpenReview.net (2022)

    Google Scholar 

  57. Zellers, R., Yatskar, M., Thomson, S., Choi, Y.: Neural motifs: scene graph parsing with global context. In: CVPR, pp. 5831–5840 (2018)

    Google Scholar 

  58. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595. Computer Vision Foundation / IEEE Computer Society (2018)

    Google Scholar 

  59. Zhong, Y., Wang, L., Chen, J., Yu, D., Li, Y.: Comprehensive image captioning via scene graph decomposition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds.) ECCV, pp. 211–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_13

  60. Zhu, J., Yang, C., Shen, Y., Shi, Z., Zhao, D., Chen, Q.: LinkGAN: linking GAN latents to pixels for controllable image synthesis. CoRR arXiv:2301.04604 (2023)

Download references

Acknowledgements

This research was funded by the Fundamental Research Funds for the Central Universities (2024XKRC082) and the National NSF of China (No. U23A20314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunchao Wei .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 781 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, M. et al. (2025). Region-Native Visual Tokenization. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15132. Springer, Cham. https://doi.org/10.1007/978-3-031-72904-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72904-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72903-4

  • Online ISBN: 978-3-031-72904-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics