Skip to main content

Can Textual Semantics Mitigate Sounding Object Segmentation Preference?

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

The Audio-Visual Segmentation (AVS) task aims to segment sounding objects in the visual space using audio cues. However, in this work, it is recognized that previous AVS methods show a heavy reliance on detrimental segmentation preferences related to audible objects, rather than precise audio guidance. We argue that the primary reason is that audio lacks robust semantics compared to vision, especially in multi-source sounding scenes, resulting in weak audio guidance over the visual space. Motivated by the fact that text modality is well explored and contains rich abstract semantics, we propose leveraging text cues from the visual scene to enhance audio guidance with the semantics inherent in text. Our approach begins by obtaining scene descriptions through an off-the-shelf image captioner and prompting a frozen large language model to deduce potential sounding objects as text cues. Subsequently, we introduce a novel semantics-driven audio modeling module with a dynamic mask to integrate audio features with text cues, leading to representative sounding object features. These features not only encompass audio cues but also possess vivid semantics, providing clearer guidance in the visual space. Experimental results on AVS benchmarks validate that our method exhibits enhanced sensitivity to audio when aided by text cues, achieving highly competitive performance on all three subsets. Project page: https://github.com/GeWu-Lab/Sounding-Object-Segmentation-Preference.

Y. Wang and P. Sun—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    To be clear, we define audible objects as objects capable of producing sound, while sounding objects are defined as objects that are currently producing sound.

References

  1. Abu-El-Haija, S., et al.: YouTube-8M: a large-scale video classification benchmark. arXiv preprint arXiv:1609.08675 (2016)

  2. Bao, F., et al.: One transformer fits all distributions in multi-modal diffusion at scale. arXiv preprint arXiv:2303.06555 (2023)

  3. Chen, S., et al.: BEATs: audio pre-training with acoustic tokenizers. arXiv preprint arXiv:2212.09058 (2022)

  4. Cheng, B., Choudhuri, A., Misra, I., Kirillov, A., Girdhar, R., Schwing, A.G.: Mask2Former for video instance segmentation (2021)

    Google Scholar 

  5. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1290–1299 (2022)

    Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Espejel, J.L., Ettifouri, E.H., Alassan, M.S.Y., Chouham, E.M., Dahhane, W.: GPT-3.5, GPT-4, or bard? evaluating LLMs reasoning ability in zero-shot setting and performance boosting through prompts. Nat. Lang. Process. J. 5, 100032 (2023)

    Google Scholar 

  8. Gao, S., Chen, Z., Chen, G., Wang, W., Lu, T.: AVSegFormer: audio-visual segmentation with transformer (2023)

    Google Scholar 

  9. Gemmeke, J.F., et al.: Audio set: an ontology and human-labeled dataset for audio events. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 776–780. IEEE (2017)

    Google Scholar 

  10. Girdhar, R., et al.: ImageBind: one embedding space to bind them all. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15180–15190 (2023)

    Google Scholar 

  11. Hao, D., Mao, Y., He, B., Han, X., Dai, Y., Zhong, Y.: Improving audio-visual segmentation with bidirectional generation. arXiv preprint arXiv:2308.08288 (2023)

  12. Van der Heiden, R.M., Janssen, C.P., Donker, S.F., Hardeman, L.E., Mans, K., Kenemans, J.L.: Susceptibility to audio signals during autonomous driving. PLoS ONE 13(8), e0201963 (2018)

    Article  Google Scholar 

  13. Hershey, S., et al.: CNN architectures for large-scale audio classification. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 131–135. IEEE (2017)

    Google Scholar 

  14. Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. In: International Conference on Machine Learning, pp. 2790–2799. PMLR (2019)

    Google Scholar 

  15. Hu, D., Wei, Y., Qian, R., Lin, W., Song, R., Wen, J.R.: Class-aware sounding objects localization via audiovisual correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 9844–9859 (2021)

    Article  Google Scholar 

  16. Huang, S., et al.: Discovering sounding objects by audio queries for audio visual segmentation (2023)

    Google Scholar 

  17. Hur, C., Park, H.: Zero-shot image classification with rectified embedding vectors using a caption generator. Appl. Sci. 13(12), 7071 (2023)

    Article  MATH  Google Scholar 

  18. Johnson, J., Karpathy, A., Fei-Fei, L.: DenseCap: fully convolutional localization networks for dense captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4565–4574 (2016)

    Google Scholar 

  19. Kirillov, A., et al.: Segment anything. arXiv:2304.02643 (2023)

  20. Li, K., Yang, Z., Chen, L., Yang, Y., Xun, J.: CATR: combinatorial-dependence audio-queried transformer for audio-visual video segmentation. arXiv preprint arXiv:2309.09709 (2023)

  21. Ling, Y., Li, Y., Gan, Z., Zhang, J., Chi, M., Wang, Y.: Hear to segment: unmixing the audio to guide the semantic segmentation (2023)

    Google Scholar 

  22. Liu, C., et al.: Audio-visual segmentation by exploring cross-modal mutual semantics (2023)

    Google Scholar 

  23. Liu, C., et al.: BAVS: bootstrapping audio-visual segmentation by integrating foundation knowledge. arXiv preprint arXiv:2308.10175 (2023)

  24. Liu, H., Li, C., Li, Y., Lee, Y.J.: Improved baselines with visual instruction tuning (2023)

    Google Scholar 

  25. Liu, H., et al.: LLaVA-next: improved reasoning, OCR, and world knowledge (2024). https://llava-vl.github.io/blog/2024-01-30-llava-next/

  26. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning (2023)

    Google Scholar 

  27. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. arXiv preprint arXiv:2304.08485 (2023)

  28. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. Adv. Neural Inf. Process. Syst. 36 (2024)

    Google Scholar 

  29. Liu, J., Ju, C., Ma, C., Wang, Y., Wang, Y., Zhang, Y.: Audio-aware query-enhanced transformer for audio-visual segmentation (2023)

    Google Scholar 

  30. Liu, J., Wang, Y., Ju, C., Zhang, Y., Xie, W.: Annotation-free audio-visual segmentation. arXiv preprint arXiv:2305.11019 (2023)

  31. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  32. Ma, J., Sun, P., Wang, Y., Hu, D.: Stepping stones: a progressive training strategy for audio-visual semantic segmentation. In: IEEE European Conference on Computer Vision (ECCV) (2024)

    Google Scholar 

  33. Majumder, S., Al-Halah, Z., Grauman, K.: Move2Hear: active audio-visual source separation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 275–285 (2021)

    Google Scholar 

  34. Mo, S., Tian, Y.: AV-SAM: segment anything model meets audio-visual localization and segmentation. arXiv preprint arXiv:2305.01836 (2023)

  35. Park, S., Senocak, A., Chung, J.S.: MarginNCE: robust sound localization with a negative margin. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE (2023)

    Google Scholar 

  36. Senocak, A., Oh, T.H., Kim, J., Yang, M.H., Kweon, I.S.: Learning to localize sound source in visual scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4358–4366 (2018)

    Google Scholar 

  37. Sharma, H., Jalal, A.S.: Image captioning improved visual question answering. Multimed. Tools Appl. 81(24), 34775–34796 (2022)

    Article  Google Scholar 

  38. Shi, Z., Zhou, X., Qiu, X., Zhu, X.: Improving image captioning with better use of captions. arXiv preprint arXiv:2006.11807 (2020)

  39. Touvron, H., et al.: LLaMA 2: open foundation and fine-tuned chat models (2023)

    Google Scholar 

  40. Wang, Y., Liu, W., Li, G., Ding, J., Hu, D., Li, X.: Prompting segmentation with sound is generalizable audio-visual source localizer. arXiv preprint arXiv:2309.07929 (2023)

  41. Wang, Y., Sun, P., Zhou, D., Li, G., Zhang, H., Hu, D.: Ref-AVS: refer and segment objects in audio-visual scenes. In: IEEE European Conference on Computer Vision (ECCV) (2024)

    Google Scholar 

  42. Wu, W., Yao, H., Zhang, M., Song, Y., Ouyang, W., Wang, J.: GPT4Vis: what can GPT-4 do for zero-shot visual recognition? arXiv preprint arXiv:2311.15732 (2023)

  43. Yan, S., et al.: Referred by multi-modality: a unified temporal transformer for video object segmentation. arXiv preprint arXiv:2305.16318 (2023)

  44. Yang, Z., et al.: The dawn of LMMs: preliminary explorations with GPT-4v (ision). arXiv preprint arXiv:2309.17421, vol. 9, no. 1, p. 1 (2023)

  45. Zhang, H., Li, X., Bing, L.: Video-LLaMA: an instruction-tuned audio-visual language model for video understanding (2023)

    Google Scholar 

  46. Zhou, B., et al.: Semantic understanding of scenes through the ADE20K dataset. Int. J. Comput. Vision 127(3), 302–321 (2019)

    Article  MATH  Google Scholar 

  47. Zhou, J., et al.: Audio-visual segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13697, pp. 386–403. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_22

    Chapter  Google Scholar 

  48. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

  49. Zürn, J., Burgard, W.: Self-supervised moving vehicle detection from audio-visual cues (2022)

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (NO. 62106272), and Public Computing Cloud, Renmin University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Hu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3092 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Sun, P., Li, Y., Zhang, H., Hu, D. (2025). Can Textual Semantics Mitigate Sounding Object Segmentation Preference?. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15132. Springer, Cham. https://doi.org/10.1007/978-3-031-72904-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72904-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72903-4

  • Online ISBN: 978-3-031-72904-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics