Abstract
The Audio-Visual Segmentation (AVS) task aims to segment sounding objects in the visual space using audio cues. However, in this work, it is recognized that previous AVS methods show a heavy reliance on detrimental segmentation preferences related to audible objects, rather than precise audio guidance. We argue that the primary reason is that audio lacks robust semantics compared to vision, especially in multi-source sounding scenes, resulting in weak audio guidance over the visual space. Motivated by the fact that text modality is well explored and contains rich abstract semantics, we propose leveraging text cues from the visual scene to enhance audio guidance with the semantics inherent in text. Our approach begins by obtaining scene descriptions through an off-the-shelf image captioner and prompting a frozen large language model to deduce potential sounding objects as text cues. Subsequently, we introduce a novel semantics-driven audio modeling module with a dynamic mask to integrate audio features with text cues, leading to representative sounding object features. These features not only encompass audio cues but also possess vivid semantics, providing clearer guidance in the visual space. Experimental results on AVS benchmarks validate that our method exhibits enhanced sensitivity to audio when aided by text cues, achieving highly competitive performance on all three subsets. Project page: https://github.com/GeWu-Lab/Sounding-Object-Segmentation-Preference.
Y. Wang and P. Sun—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
To be clear, we define audible objects as objects capable of producing sound, while sounding objects are defined as objects that are currently producing sound.
References
Abu-El-Haija, S., et al.: YouTube-8M: a large-scale video classification benchmark. arXiv preprint arXiv:1609.08675 (2016)
Bao, F., et al.: One transformer fits all distributions in multi-modal diffusion at scale. arXiv preprint arXiv:2303.06555 (2023)
Chen, S., et al.: BEATs: audio pre-training with acoustic tokenizers. arXiv preprint arXiv:2212.09058 (2022)
Cheng, B., Choudhuri, A., Misra, I., Kirillov, A., Girdhar, R., Schwing, A.G.: Mask2Former for video instance segmentation (2021)
Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1290–1299 (2022)
Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Espejel, J.L., Ettifouri, E.H., Alassan, M.S.Y., Chouham, E.M., Dahhane, W.: GPT-3.5, GPT-4, or bard? evaluating LLMs reasoning ability in zero-shot setting and performance boosting through prompts. Nat. Lang. Process. J. 5, 100032 (2023)
Gao, S., Chen, Z., Chen, G., Wang, W., Lu, T.: AVSegFormer: audio-visual segmentation with transformer (2023)
Gemmeke, J.F., et al.: Audio set: an ontology and human-labeled dataset for audio events. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 776–780. IEEE (2017)
Girdhar, R., et al.: ImageBind: one embedding space to bind them all. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15180–15190 (2023)
Hao, D., Mao, Y., He, B., Han, X., Dai, Y., Zhong, Y.: Improving audio-visual segmentation with bidirectional generation. arXiv preprint arXiv:2308.08288 (2023)
Van der Heiden, R.M., Janssen, C.P., Donker, S.F., Hardeman, L.E., Mans, K., Kenemans, J.L.: Susceptibility to audio signals during autonomous driving. PLoS ONE 13(8), e0201963 (2018)
Hershey, S., et al.: CNN architectures for large-scale audio classification. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 131–135. IEEE (2017)
Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. In: International Conference on Machine Learning, pp. 2790–2799. PMLR (2019)
Hu, D., Wei, Y., Qian, R., Lin, W., Song, R., Wen, J.R.: Class-aware sounding objects localization via audiovisual correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 9844–9859 (2021)
Huang, S., et al.: Discovering sounding objects by audio queries for audio visual segmentation (2023)
Hur, C., Park, H.: Zero-shot image classification with rectified embedding vectors using a caption generator. Appl. Sci. 13(12), 7071 (2023)
Johnson, J., Karpathy, A., Fei-Fei, L.: DenseCap: fully convolutional localization networks for dense captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4565–4574 (2016)
Kirillov, A., et al.: Segment anything. arXiv:2304.02643 (2023)
Li, K., Yang, Z., Chen, L., Yang, Y., Xun, J.: CATR: combinatorial-dependence audio-queried transformer for audio-visual video segmentation. arXiv preprint arXiv:2309.09709 (2023)
Ling, Y., Li, Y., Gan, Z., Zhang, J., Chi, M., Wang, Y.: Hear to segment: unmixing the audio to guide the semantic segmentation (2023)
Liu, C., et al.: Audio-visual segmentation by exploring cross-modal mutual semantics (2023)
Liu, C., et al.: BAVS: bootstrapping audio-visual segmentation by integrating foundation knowledge. arXiv preprint arXiv:2308.10175 (2023)
Liu, H., Li, C., Li, Y., Lee, Y.J.: Improved baselines with visual instruction tuning (2023)
Liu, H., et al.: LLaVA-next: improved reasoning, OCR, and world knowledge (2024). https://llava-vl.github.io/blog/2024-01-30-llava-next/
Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning (2023)
Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. arXiv preprint arXiv:2304.08485 (2023)
Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. Adv. Neural Inf. Process. Syst. 36 (2024)
Liu, J., Ju, C., Ma, C., Wang, Y., Wang, Y., Zhang, Y.: Audio-aware query-enhanced transformer for audio-visual segmentation (2023)
Liu, J., Wang, Y., Ju, C., Zhang, Y., Xie, W.: Annotation-free audio-visual segmentation. arXiv preprint arXiv:2305.11019 (2023)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Ma, J., Sun, P., Wang, Y., Hu, D.: Stepping stones: a progressive training strategy for audio-visual semantic segmentation. In: IEEE European Conference on Computer Vision (ECCV) (2024)
Majumder, S., Al-Halah, Z., Grauman, K.: Move2Hear: active audio-visual source separation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 275–285 (2021)
Mo, S., Tian, Y.: AV-SAM: segment anything model meets audio-visual localization and segmentation. arXiv preprint arXiv:2305.01836 (2023)
Park, S., Senocak, A., Chung, J.S.: MarginNCE: robust sound localization with a negative margin. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE (2023)
Senocak, A., Oh, T.H., Kim, J., Yang, M.H., Kweon, I.S.: Learning to localize sound source in visual scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4358–4366 (2018)
Sharma, H., Jalal, A.S.: Image captioning improved visual question answering. Multimed. Tools Appl. 81(24), 34775–34796 (2022)
Shi, Z., Zhou, X., Qiu, X., Zhu, X.: Improving image captioning with better use of captions. arXiv preprint arXiv:2006.11807 (2020)
Touvron, H., et al.: LLaMA 2: open foundation and fine-tuned chat models (2023)
Wang, Y., Liu, W., Li, G., Ding, J., Hu, D., Li, X.: Prompting segmentation with sound is generalizable audio-visual source localizer. arXiv preprint arXiv:2309.07929 (2023)
Wang, Y., Sun, P., Zhou, D., Li, G., Zhang, H., Hu, D.: Ref-AVS: refer and segment objects in audio-visual scenes. In: IEEE European Conference on Computer Vision (ECCV) (2024)
Wu, W., Yao, H., Zhang, M., Song, Y., Ouyang, W., Wang, J.: GPT4Vis: what can GPT-4 do for zero-shot visual recognition? arXiv preprint arXiv:2311.15732 (2023)
Yan, S., et al.: Referred by multi-modality: a unified temporal transformer for video object segmentation. arXiv preprint arXiv:2305.16318 (2023)
Yang, Z., et al.: The dawn of LMMs: preliminary explorations with GPT-4v (ision). arXiv preprint arXiv:2309.17421, vol. 9, no. 1, p. 1 (2023)
Zhang, H., Li, X., Bing, L.: Video-LLaMA: an instruction-tuned audio-visual language model for video understanding (2023)
Zhou, B., et al.: Semantic understanding of scenes through the ADE20K dataset. Int. J. Comput. Vision 127(3), 302–321 (2019)
Zhou, J., et al.: Audio-visual segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13697, pp. 386–403. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_22
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)
Zürn, J., Burgard, W.: Self-supervised moving vehicle detection from audio-visual cues (2022)
Acknowledgements
This research was supported by National Natural Science Foundation of China (NO. 62106272), and Public Computing Cloud, Renmin University of China.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Sun, P., Li, Y., Zhang, H., Hu, D. (2025). Can Textual Semantics Mitigate Sounding Object Segmentation Preference?. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15132. Springer, Cham. https://doi.org/10.1007/978-3-031-72904-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-72904-1_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72903-4
Online ISBN: 978-3-031-72904-1
eBook Packages: Computer ScienceComputer Science (R0)