Skip to main content

Enhancing Source-Free Domain Adaptive Object Detection with Low-Confidence Pseudo Label Distillation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Source-Free domain adaptive Object Detection (SFOD) is a promising strategy for deploying trained detectors to new, unlabeled domains without accessing source data, addressing significant concerns around data privacy and efficiency. Most SFOD methods leverage a Mean-Teacher (MT) self-training paradigm relying heavily on High-confidence Pseudo Labels (HPL). However, these HPL often overlook small instances that undergo significant appearance changes with domain shifts. Additionally, HPL ignore instances with low confidence due to the scarcity of training samples, resulting in biased adaptation toward familiar instances from the source domain. To address this limitation, we introduce the Low-confidence Pseudo Label Distillation (LPLD) loss within the Mean-Teacher based SFOD framework. This novel approach is designed to leverage the proposals from Region Proposal Network (RPN), which potentially encompasses hard-to-detect objects in unfamiliar domains. Initially, we extract HPL using a standard pseudo-labeling technique and mine a set of Low-confidence Pseudo Labels (LPL) from proposals generated by RPN, leaving those that do not overlap significantly with HPL. These LPL are further refined by leveraging class-relation information and reducing the effect of inherent noise for the LPLD loss calculation. Furthermore, we use feature distance to adaptively weight the LPLD loss to focus on LPL containing a larger foreground area. Our method outperforms previous SFOD methods on four cross-domain object detection benchmarks. Extensive experiments demonstrate that our LPLD loss leads to effective adaptation by reducing false negatives and facilitating the use of domain-invariant knowledge from the source model. Code is available at https://github.com/junia3/LPLD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arruda, V.F., et al.: Cross-domain car detection using unsupervised image-to-image translation: from day to night. In: IJCNN (2019)

    Google Scholar 

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Chen, C., et al.: Progressive feature alignment for unsupervised domain adaptation. In: CVPR (2019)

    Google Scholar 

  4. Chen, C., Zheng, Z., Ding, X., Huang, Y., Dou, Q.: Harmonizing transferability and discriminability for adapting object detectors. In: CVPR (2020)

    Google Scholar 

  5. Chen, M., et al.: Learning domain adaptive object detection with probabilistic teacher. In: ICML (2022)

    Google Scholar 

  6. Chen, W., Lin, L., Yang, S., Xie, D., Pu, S., Zhuang, Y.: Self-supervised noisy label learning for source-free unsupervised domain adaptation. In: IROS (2022)

    Google Scholar 

  7. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: CVPR (2018)

    Google Scholar 

  8. Chen, Z., Wang, Z., Zhang, Y.: Exploiting low-confidence pseudo-labels for source-free object detection. In: ACM (2023)

    Google Scholar 

  9. Chu, Q., Li, S., Chen, G., Li, K., Li, X.: Adversarial alignment for source free object detection. In: AAAI (2023)

    Google Scholar 

  10. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  12. Deng, J., Li, W., Chen, Y., Duan, L.: Unbiased mean teacher for cross-domain object detection. In: CVPR (2021)

    Google Scholar 

  13. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes challenge: a retrospective. IJCV 111, 98–136 (2015)

    Article  Google Scholar 

  14. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML (2015)

    Google Scholar 

  15. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  17. He, Z., Zhang, L.: Multi-adversarial faster-RCNN for unrestricted object detection. In: ICCV (2019)

    Google Scholar 

  18. He, Z., Zhang, L.: Domain adaptive object detection via asymmetric tri-way faster-RCNN. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 309–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_19

    Chapter  Google Scholar 

  19. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: ICML (2018)

    Google Scholar 

  20. Huang, J., Guan, D., Xiao, A., Lu, S.: Model adaptation: historical contrastive learning for unsupervised domain adaptation without source data. In: NeurIPS (2021)

    Google Scholar 

  21. Inoue, N., Furuta, R., Yamasaki, T., Aizawa, K.: Cross-domain weakly-supervised object detection through progressive domain adaptation. In: CVPR (2018)

    Google Scholar 

  22. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks? In: ICRA (2017)

    Google Scholar 

  23. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: CVPR (2019)

    Google Scholar 

  24. Kaplan, J., et al.: Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020)

  25. Khodabandeh, M., Vahdat, A., Ranjbar, M., Macready, W.G.: A robust learning approach to domain adaptive object detection. In: ICCV (2019)

    Google Scholar 

  26. Kim, S., Choi, J., Kim, T., Kim, C.: Self-training and adversarial background regularization for unsupervised domain adaptive one-stage object detection. In: ICCV (2019)

    Google Scholar 

  27. Kim, T., Jeong, M., Kim, S., Choi, S., Kim, C.: Diversify and match: a domain adaptive representation learning paradigm for object detection. In: CVPR (2019)

    Google Scholar 

  28. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  29. Kundu, J.N., Venkat, N., Babu, R.V., et al.: Universal source-free domain adaptation. In: CVPR (2020)

    Google Scholar 

  30. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: ICML (2013)

    Google Scholar 

  31. Li, S., Ye, M., Zhu, X., Zhou, L., Xiong, L.: Source-free object detection by learning to overlook domain style. In: CVPR (2022)

    Google Scholar 

  32. Li, X., et al.: A free lunch for unsupervised domain adaptive object detection without source data. In: AAAI (2021)

    Google Scholar 

  33. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation. In: ICML (2020)

    Google Scholar 

  34. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  35. Liu, H., Wang, J., Long, M.: Cycle self-training for domain adaptation. In: NeurIPS (2021)

    Google Scholar 

  36. Liu, Q., Lin, L., Shen, Z., Yang, Z.: Periodically exchange teacher-student for source-free object detection. In: ICCV (2023)

    Google Scholar 

  37. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  38. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: NeurIPS (2016)

    Google Scholar 

  39. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS (2017)

    Google Scholar 

  40. Morerio, P., Volpi, R., Ragonesi, R., Murino, V.: Generative pseudo-label refinement for unsupervised domain adaptation. In: WACV (2020)

    Google Scholar 

  41. Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., Kim, K.: Image to image translation for domain adaptation. In: CVPR (2018)

    Google Scholar 

  42. Pinheiro, P.O.: Unsupervised domain adaptation with similarity learning. In: CVPR (2018)

    Google Scholar 

  43. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR (2016)

    Google Scholar 

  44. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  45. Rodriguez, A.L., Mikolajczyk, K.: Domain adaptation for object detection via style consistency. In: BMVC (2019)

    Google Scholar 

  46. Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: CVPR (2019)

    Google Scholar 

  47. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR (2018)

    Google Scholar 

  48. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. IJCV 126, 973–992 (2018)

    Article  Google Scholar 

  49. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: S &P (2017)

    Google Scholar 

  50. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  51. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: NeurIPS (2020)

    Google Scholar 

  52. Soviany, P., Ionescu, R.T., Rota, P., Sebe, N.: Curriculum self-paced learning for cross-domain object detection. CVIU 204, 103166 (2021)

    Google Scholar 

  53. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS (2017)

    Google Scholar 

  54. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR (2017)

    Google Scholar 

  55. Vandeghen, R., Louppe, G., Van Droogenbroeck, M.: Adaptive self-training for object detection. In: ICCV (2023)

    Google Scholar 

  56. Vibashan, V., Oza, P., Patel, V.M.: Instance relation graph guided source-free domain adaptive object detection. In: CVPR (2023)

    Google Scholar 

  57. Vs, V., Gupta, V., Oza, P., Sindagi, V.A., Patel, V.M.: MeGA-CDA: memory guided attention for category-aware unsupervised domain adaptive object detection. In: CVPR (2021)

    Google Scholar 

  58. Wang, Q., Breckon, T.: Unsupervised domain adaptation via structured prediction based selective pseudo-labeling. In: AAAI (2020)

    Google Scholar 

  59. Xu, C.D., Zhao, X.R., Jin, X., Wei, X.S.: Exploring categorical regularization for domain adaptive object detection. In: CVPR (2020)

    Google Scholar 

  60. Zhao, G., Li, G., Xu, R., Lin, L.: Collaborative training between region proposal localization and classification for domain adaptive object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 86–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_6

    Chapter  Google Scholar 

  61. Zhuang, C., Han, X., Huang, W., Scott, M.: iFAN: image-instance full alignment networks for adaptive object detection. In: AAAI (2020)

    Google Scholar 

  62. Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training. In: ICCV (2019)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF2021R1A2C2006703), and partly supported by the Yonsei Signature Research Cluster Program of 2024 (2024-22-0161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwanghoon Sohn .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18286 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoon, I., Kwon, H., Kim, J., Park, J., Jang, H., Sohn, K. (2025). Enhancing Source-Free Domain Adaptive Object Detection with Low-Confidence Pseudo Label Distillation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15142. Springer, Cham. https://doi.org/10.1007/978-3-031-72907-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72907-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72906-5

  • Online ISBN: 978-3-031-72907-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics