Abstract
Neuromorphic sensors, specifically event cameras, revolutionize visual data acquisition by capturing pixel intensity changes with exceptional dynamic range, minimal latency, and energy efficiency, setting them apart from conventional frame-based cameras. The distinctive capabilities of event cameras have ignited significant interest in the domain of event-based action recognition, recognizing their vast potential for advancement. However, the development in this field is currently slowed by the lack of comprehensive, large-scale datasets, which are critical for developing robust recognition frameworks. To bridge this gap, we introduces DailyDVS-200, a meticulously curated benchmark dataset tailored for the event-based action recognition community. DailyDVS-200 is extensive, covering 200 action categories across real-world scenarios, recorded by 47 participants, and comprises more than 22,000 event sequences. This dataset is designed to reflect a broad spectrum of action types, scene complexities, and data acquisition diversity. Each sequence in the dataset is annotated with 14 attributes, ensuring a detailed characterization of the recorded actions. Moreover, DailyDVS-200 is structured to facilitate a wide range of research paths, offering a solid foundation for both validating existing approaches and inspiring novel methodologies. By setting a new benchmark in the field, we challenge the current limitations of neuromorphic data processing and invite a surge of new approaches in event-based action recognition techniques, which paves the way for future explorations in neuromorphic computing and beyond. The dataset and source code are available at https://github.com/QiWang233/DailyDVS-200.
Q. Wang and Z. Xu—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Amir, A., et al.: A low power, fully event-based gesture recognition system. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7243–7252 (2017)
Baldwin, R.W., Liu, R., Almatrafi, M., Asari, V., Hirakawa, K.: Time-ordered recent event (TORE) volumes for event cameras. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 2519–2532 (2022)
Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML, vol. 2, p. 4 (2021)
Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E., Andreopoulos, Y.: Graph-based spatio-temporal feature learning for neuromorphic vision sensing. IEEE Trans. Image Process. 29, 9084–9098 (2020)
de Blegiers, T., Dave, I.R., Yousaf, A., Shah, M.: EventTransAct: a video transformer-based framework for event-camera based action recognition. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–7. IEEE (2023)
Brandli, C., Berner, R., Yang, M., Liu, S.C., Delbruck, T.: A \(240 \times 180\) 130 db 3 \(\upmu \)s latency global shutter spatiotemporal vision sensor. IEEE J. Solid-State Circuits 49(10), 2333–2341 (2014). https://doi.org/10.1109/JSSC.2014.2342715
Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: ActivityNet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–970 (2015)
Cannici, M., Ciccone, M., Romanoni, A., Matteucci, M.: A differentiable recurrent surface for asynchronous event-based data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XX. LNCS, vol. 12365, pp. 136–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_9
Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)
Che, K., et al.: Differentiable hierarchical and surrogate gradient search for spiking neural networks. Adv. Neural. Inf. Process. Syst. 35, 24975–24990 (2022)
Chen, S., Guo, M.: Live demonstration: CeleX-V: a 1m pixel multi-mode event-based sensor. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1682–1683. IEEE (2019)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Dong, Y., Li, Y., Zhao, D., Shen, G., Zeng, Y.: Bullying10k: a large-scale neuromorphic dataset towards privacy-preserving bullying recognition. Adv. Neural Inf. Process. Syst. 36 (2024)
Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Duarte, L., Neto, P.: Event-based dataset for the detection and classification of manufacturing assembly tasks. Data Brief 54, 110340 (2024)
Feichtenhofer, C.: X3D: expanding architectures for efficient video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 203–213 (2020)
Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6202–6211 (2019)
Gao, Y., et al.: Action recognition and benchmark using event cameras. IEEE Trans. Pattern Anal. Mach. Intell. (2023)
Gehrig, D., Loquercio, A., Derpanis, K.G., Scaramuzza, D.: End-to-end learning of representations for asynchronous event-based data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5633–5643 (2019)
Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)
Kim, J., Bae, J., Park, G., Zhang, D., Kim, Y.M.: N-ImageNet: towards robust, fine-grained object recognition with event cameras. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2146–2156 (2021)
Kliper-Gross, O., Hassner, T., Wolf, L.: The action similarity labeling challenge. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 615–621 (2011)
Kong, Y., Fu, Y.: Human action recognition and prediction: a survey. Int. J. Comput. Vision 130(5), 1366–1401 (2022)
Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: 2011 International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)
Lagorce, X., Orchard, G., Galluppi, F., Shi, B.E., Benosman, R.B.: HOTS: a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1346–1359 (2016)
Laptev, I.: On space-time interest points. Int. J. Comput. Vision 64, 107–123 (2005)
Li, H., Liu, H., Ji, X., Li, G., Shi, L.: CIFAR10-DVS: an event-stream dataset for object classification. Front. Neurosci. 11, 309 (2017)
Li, J., Wang, X., Zhu, L., Li, J., Huang, T., Tian, Y.: Retinomorphic object detection in asynchronous visual streams. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 1332–1340 (2022)
Li, Y., Dong, Y., Zhao, D., Zeng, Y.: N-Omniglot, a large-scale neuromorphic dataset for spatio-temporal sparse few-shot learning. Sci. Data 9(1), 746 (2022)
Li, Y., et al.: Graph-based asynchronous event processing for rapid object recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 934–943 (2021)
Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7083–7093 (2019)
Lin, Y., Ding, W., Qiang, S., Deng, L., Li, G.: ES-ImageNet: a million event-stream classification dataset for spiking neural networks. Front. Neurosci. 15, 1546 (2021)
Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In: CVPR 2011, pp. 3337–3344. IEEE (2011)
Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.Y., Kot, A.C.: NTU RGB+ D 120: a large-scale benchmark for 3D human activity understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2684–2701 (2019)
Liu, Q., Xing, D., Tang, H., Ma, D., Pan, G.: Event-based action recognition using motion information and spiking neural networks. In: IJCAI, pp. 1743–1749 (2021)
Liu, Z., et al.: Video swin transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3202–3211 (2022)
Messikommer, N., Gehrig, D., Loquercio, A., Scaramuzza, D.: Event-based asynchronous sparse convolutional networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part VIII. LNCS, vol. 12353, pp. 415–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_25
Miao, S., et al.: Neuromorphic vision datasets for pedestrian detection, action recognition, and fall detection. Front. Neurorobot. 13, 38 (2019)
Moeys, D.P., et al.: Steering a predator robot using a mixed frame/event-driven convolutional neural network. In: 2016 Second International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP), pp. 1–8. IEEE (2016)
Morency, L.P., Quattoni, A., Darrell, T.: Latent-dynamic discriminative models for continuous gesture recognition. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
Neftci, E.O., Mostafa, H., Zenke, F.: Surrogate gradient learning in spiking neural networks: bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Process. Mag. 36(6), 51–63 (2019)
Orchard, G., Jayawant, A., Cohen, G.K., Thakor, N.: Converting static image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9, 437 (2015)
Peng, Y., Zhang, Y., Xiong, Z., Sun, X., Wu, F.: GET: group event transformer for event-based vision. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6038–6048 (2023)
Posch, C., Matolin, D., Wohlgenannt, R.: A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. IEEE J. Solid-State Circuits 46(1), 259–275 (2010)
Rebecq, H., Horstschaefer, T., Scaramuzza, D.: Real-time visual-inertial odometry for event cameras using keyframe-based nonlinear optimization (2017)
Sabater, A., Montesano, L., Murillo, A.C.: Event transformer. A sparse-aware solution for efficient event data processing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2677–2686 (2022)
Schaefer, S., Gehrig, D., Scaramuzza, D.: AEGNN: asynchronous event-based graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12371–12381 (2022)
Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: Proceedings of the 15th ACM International Conference on Multimedia, pp. 357–360 (2007)
Serrano-Gotarredona, T., Linares-Barranco, B.: Poker-DVS and MNIST-DVS. Their history, how they were made, and other details. Front. Neurosci. 9, 481 (2015)
Shi, Q., Cheng, L., Wang, L., Smola, A.: Human action segmentation and recognition using discriminative semi-Markov models. Int. J. Comput. Vision 93, 22–32 (2011)
Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.: HATS: histograms of averaged time surfaces for robust event-based object classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1731–1740 (2018)
Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)
Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Wang, H., Oneata, D., Verbeek, J., Schmid, C.: A robust and efficient video representation for action recognition. Int. J. Comput. Vision 119, 219–238 (2016)
Wang, X., et al.: Reliable object tracking via collaboration of frame and event flows. arXiv preprint arXiv:2108.05015 (2021)
Wang, X., et al.: HARDVS: revisiting human activity recognition with dynamic vision sensors. arXiv preprint arXiv:2211.09648 (2022)
Yao, M., et al.: Spike-driven transformer. Adv. Neural Inf. Process. Syst. 36 (2024)
Zeng, Y., et al.: BrainCog: a spiking neural network based, brain-inspired cognitive intelligence engine for brain-inspired AI and brain simulation. Patterns 4(8) (2023)
Zhou, Z., et al.: SpikFormer: when spiking neural network meets transformer. arXiv preprint arXiv:2209.15425 (2022)
Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised event-based learning of optical flow, depth, and egomotion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 989–997 (2019)
Zhu, L., Li, J., Wang, X., Huang, T., Tian, Y.: NeuSpike-net: high speed video reconstruction via bio-inspired neuromorphic cameras. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2400–2409 (2021)
Zhu, L., Wang, X., Chang, Y., Li, J., Huang, T., Tian, Y.: Event-based video reconstruction via potential-assisted spiking neural network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3594–3604 (2022)
Zhu, S., Yang, T., Mendieta, M., Chen, C.: A3D: adaptive 3D networks for video action recognition. arXiv preprint arXiv:2011.12384 (2020)
Acknowledgements
This work was partly supported by Chinese Defense Advanced Research Program (50912020105), NSFC of China under Grants Nos. 62073258 and 62072352, and Natural Science Foundation of Shaanxi Province (2024JC-JCQN-66).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Q. et al. (2025). DailyDVS-200: A Comprehensive Benchmark Dataset for Event-Based Action Recognition. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15142. Springer, Cham. https://doi.org/10.1007/978-3-031-72907-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-72907-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72906-5
Online ISBN: 978-3-031-72907-2
eBook Packages: Computer ScienceComputer Science (R0)