Skip to main content

ControlCap: Controllable Region-Level Captioning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15096))

Included in the following conference series:

  • 353 Accesses

Abstract

Region-level captioning is challenged by the caption degeneration issue, which refers to that pre-trained multimodal models tend to predict the most frequent captions but miss the less frequent ones. In this study, we propose a controllable region-level captioning (ControlCap) approach, which introduces control words to a multimodal model to address the caption degeneration issue. In specific, ControlCap leverages a discriminative module to generate control words within the caption space to partition it to multiple sub-spaces. The multimodal model is constrained to generate captions within a few sub-spaces containing the control words, which increases the opportunity of hitting less frequent captions, alleviating the caption degeneration issue. Furthermore, interactive control words can be given by either a human or an expert model, which enables captioning beyond the training caption space, enhancing the model’s generalization ability. Extensive experiments on Visual Genome and RefCOCOg datasets show that ControlCap respectively improves the CIDEr score by 21.6 and 2.2, outperforming the state-of-the-arts by significant margins. Code is available at https://github.com/callsys/ControlCap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Introducing ChatGPT (2022). https://openai.com/blog/chatgpt

  2. Alayrac, J., et al.: Flamingo: a visual language model for few-shot learning. In: NeurIPS (2022)

    Google Scholar 

  3. Brown, T.B., et al.: Language models are few-shot learners. In: NeurIPS (2020)

    Google Scholar 

  4. Carlsson, F., Öhman, J., Liu, F., Verlinden, S., Nivre, J., Sahlgren, M.: Fine-grained controllable text generation using non-residual prompting. In: ACL, pp. 6837–6857 (2022)

    Google Scholar 

  5. Chen, J., et al.: MiniGPT-V2: large language model as a unified interface for vision-language multi-task learning. arXiv preprint arXiv:2310.09478 (2023)

  6. Chen, K., Zhang, Z., Zeng, W., Zhang, R., Zhu, F., Zhao, R.: Shikra: unleashing multimodal llm’s referential dialogue magic. arXiv preprint arXiv:2306.15195 (2023)

  7. Chung, H.W., et al.: Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416 (2022)

  8. Dai, W., et al.: InstructBLIP: towards general-purpose vision-language models with instruction tuning. arXiv preprint arXiv:2305.06500 (2023)

  9. Dathathri, S., et al.: Plug and play language models: a simple approach to controlled text generation. In: ICLR (2020)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE CVPR, pp. 248–255 (2009)

    Google Scholar 

  11. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) NAACL, pp. 4171–4186 (2019)

    Google Scholar 

  12. Ding, N., Deng, C., Tan, M., Du, Q., Ge, Z., Wu, Q.: Image captioning with controllable and adaptive length levels. IEEE TPAMI 764–779 (2024)

    Google Scholar 

  13. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  14. Fan, A., Lewis, M., Dauphin, Y.N.: Hierarchical neural story generation. In: Gurevych, I., Miyao, Y. (eds.) ACL, pp. 889–898 (2018)

    Google Scholar 

  15. Fang, Y., et al.: EVA: exploring the limits of masked visual representation learning at scale. In: IEEE CVPR, pp. 19358–19369 (2023)

    Google Scholar 

  16. Guo, Q., et al.: RegionGPT: towards region understanding vision language model (2024)

    Google Scholar 

  17. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 1735–1780 (1997)

    Google Scholar 

  20. Hu, Y., Hua, H., Yang, Z., Shi, W., Smith, N.A., Luo, J.: PromptCap: prompt-guided image captioning for VQA with GPT-3. In: IEEE ICCV, pp. 2963–2975 (2023)

    Google Scholar 

  21. Huang, X., et al.: Segment and caption anything (2024). https://arxiv.org/abs/2312.00869

  22. Huang, X., et al.: Tag2Text: guiding vision-language model via image tagging. arXiv preprint arXiv:2303.05657 (2023)

  23. Johnson, J., Karpathy, A., Fei-Fei, L.: DenseCap: fully convolutional localization networks for dense captioning. In: IEEE CVPR, pp. 4565–4574 (2016)

    Google Scholar 

  24. Karatzas, D., et al.: ICDAR 2015 competition on robust reading. In: IEEE ICDAR, pp. 1156–1160 (2015)

    Google Scholar 

  25. Kirillov, A., et al.: Segment anything. In: IEEE ICCV, pp. 4015–4026 (2023)

    Google Scholar 

  26. Krishna, R., et al.: Visual genome: Connecting language and vision using crowdsourced dense image annotations. IJCV 32–73 (2017)

    Google Scholar 

  27. Li, J., Li, D., Savarese, S., Hoi, S.C.H.: BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. In: ICML, pp. 19730–19742 (2023)

    Google Scholar 

  28. Li, J., Li, D., Xiong, C., Hoi, S.C.H.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: ICML, pp. 12888–12900 (2022)

    Google Scholar 

  29. Li, P., Zhang, H., Liu, X., Shi, S.: Rigid formats controlled text generation. In: ACL (2020)

    Google Scholar 

  30. Li, X., Thickstun, J., Gulrajani, I., Liang, P., Hashimoto, T.B.: Diffusion-LM improves controllable text generation. In: NeurIPS (2022)

    Google Scholar 

  31. Li, X., Jiang, S., Han, J.: Learning object context for dense captioning. In: AAAI, pp. 8650–8657 (2019)

    Google Scholar 

  32. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  33. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. arXiv preprint arXiv:2304.08485 (2023)

  34. Liu, R., Jia, C., Wei, J., Xu, G., Wang, L., Vosoughi, S.: Mitigating political bias in language models through reinforced calibration. In: AAAI, pp. 14857–14866 (2021)

    Google Scholar 

  35. Liu, S., Zhang, L., Yang, X., Su, H., Zhu, J.: Query2Label: a simple transformer way to multi-label classification. arXiv preprint arXiv:2107.10834 (2021)

  36. Long, Y., et al.: CapDet: Unifying dense captioning and open-world detection pretraining. In: IEEE CVPR, pp. 15233–15243 (2023)

    Google Scholar 

  37. Peng, Z., et al.: Kosmos-2: grounding multimodal large language models to the world. In: ICLR (2024)

    Google Scholar 

  38. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763 (2021)

    Google Scholar 

  39. Rasheed, H., et al.: GLaMM: pixel grounding large multimodal model. In: IEEE CVPR (2024)

    Google Scholar 

  40. Ridnik, T., et al.: Asymmetric loss for multi-label classification. In: IEEE CVPR, pp. 82–91 (2021)

    Google Scholar 

  41. Shao, S., et al.: Objects365: a large-scale, high-quality dataset for object detection. In: IEEE ICCV, pp. 8430–8439 (2019)

    Google Scholar 

  42. Shao, Z., Han, J., Debattista, K., Pang, Y.: DCMSTRD: end-to-end dense captioning via multi-scale transformer decoding. IEEE Trans. Multimed. 1–13 (2024). https://doi.org/10.1109/TMM.2024.3369863

  43. Shao, Z., Han, J., Marnerides, D., Debattista, K.: Region-object relation-aware dense captioning via transformer. IEEE TNNLS (2022)

    Google Scholar 

  44. Song, H., Wang, Y., Zhang, K., Zhang, W., Liu, T.: Bob: BERT over BERT for training persona-based dialogue models from limited personalized data. In: ACL, pp. 167–177 (2021)

    Google Scholar 

  45. Sun, Z., et al.: Alpha-clip: a clip model focusing on wherever you want. In: IEEE CVPR (2024)

    Google Scholar 

  46. Touvron, H., et al.: LLaMA: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)

  47. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  48. Wang, T., et al.: Caption anything: interactive image description with diverse multimodal controls. arXiv preprint arXiv:2305.02677 (2023)

  49. Wang, W., et al.: The all-seeing project: towards panoptic visual recognition and understanding of the open world. In: ICLR (2024)

    Google Scholar 

  50. Wu, J., et al.: GRiT: a generative region-to-text transformer for object understanding. arXiv preprint arXiv:2212.00280 (2022)

  51. Yang, L., Tang, K., Yang, J., Li, L.J.: Dense captioning with joint inference and visual context. In: IEEE CVPR, pp. 2193–2202 (2017)

    Google Scholar 

  52. Yin, G., Sheng, L., Liu, B., Yu, N., Wang, X., Shao, J.: Context and attribute grounded dense captioning. In: IEEE CVPR, pp. 6241–6250 (2019)

    Google Scholar 

  53. Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 69–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_5

    Chapter  Google Scholar 

  54. Yu, L., Tan, H., Bansal, M., Berg, T.L.: A joint speaker-listener-reinforcer model for referring expressions. In: IEEE CVPR, pp. 7282–7290 (2017)

    Google Scholar 

  55. Yu, Q., et al.: CapsFusion: rethinking image-text data at scale. arXiv preprint arXiv:2310.20550 (2023)

  56. Yuan, Y., et al.: Osprey: pixel understanding with visual instruction tuning. In: IEEE CVPR (2024)

    Google Scholar 

  57. Zhang, H., Song, H., Li, S., Zhou, M., Song, D.: A survey of controllable text generation using transformer-based pre-trained language models. arXiv preprint arXiv:2201.05337 (2022)

  58. Zhang, S., et al.: GPT4RoI: Instruction tuning large language model on region-of-interest. arXiv preprint arXiv:2307.03601 (2023)

  59. Zhang, S., et al.: OPT: open pre-trained transformer language models. arXiv preprint arXiv:2205.01068 (2022)

  60. Zhang, Y., et al.: Recognize anything: a strong image tagging model. arXiv preprint arXiv:2306.03514 (2023)

Download references

Acknowledgment

This work was supported by the Fundamental Research Funds for the Central Universities (E2ET1104, E3ET6201X2), the National Natural Science Foundation of China (NSFC) under Grant 62225208 and 62171431.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8543 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Y. et al. (2025). ControlCap: Controllable Region-Level Captioning. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15096. Springer, Cham. https://doi.org/10.1007/978-3-031-72920-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72920-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72919-5

  • Online ISBN: 978-3-031-72920-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics