Abstract
Thermal cameras measure the temperature of objects based on radiation emitted in the infrared spectrum. In this work, we propose a novel shape recovery approach that exploits the properties of heat transport, specifically heat conduction, induced on objects when illuminated using simple light bulbs. Although heat transport occurs in the entirety of an object’s volume, we show a surface approximation that enables shape recovery and empirically analyze its validity for objects with varying thicknesses. We develop an algorithm that solves a linear system of equations to estimate the intrinsic shape Laplacian from thermal videos along with several properties including heat capacity, convection coefficient, and absorbed heat flux under uncalibrated lighting of arbitrary shapes. Further, we propose a novel shape from Laplacian objective that aims to resolve the inherent shape ambiguities by drawing insights from absorbed heat flux images using two unknown lights sources. Finally, we devise a coarse-to-fine refinement strategy that faithfully recovers both low- and high-frequency shape details. We validate our method by showing accurate reconstructions, to within an error of 1–2 mm (object size \(\le \) 13.5 cm), in both simulations and from noisy thermal videos of real-world objects with complex shapes and material properties including those that are transparent and translucent to visible light. We believe leveraging heat transport as a novel cue for vision can enable new imaging capabilities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Ideally, four light sources are required to resolve the per-pixel ambiguity but we found that using two light sources to correct a few normals is sufficient for the optimization.
References
Adato, Y., Vasilyev, Y., Zickler, T., Ben-Shahar, O.: Shape from specular flow. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2054–2070 (2010). https://doi.org/10.1109/TPAMI.2010.126
Alexa, M., Herholz, P., Kohlbrenner, M., Sorkine-Hornung, O.: Properties of laplace operators for tetrahedral meshes. In: Computer Graphics Forum (2020). https://doi.org/10.1111/cgf.14068
Bergman, T.L.: Introduction to Heat Transfer. Wiley, Hoboken (2011)
Boscaini, D., Eynard, D., Kourounis, D., Bronstein, M.M.: Shape-from-operator: recovering shapes from intrinsic operators. In: Computer Graphics Forum, no. 2, pp. 265–274. https://doi.org/10.1111/cgf.12558
Brahmbhatt, S., Ham, C., Kemp, C.C., Hays, J.: ContactDB: analyzing and predicting grasp contact via thermal imaging. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Calcagni, G., Oriti, D., Thürigen, J.: Laplacians on discrete and quantum geometries. Class. Quantum Gravity 30(12), 125006 (2013). https://doi.org/10.1088/0264-9381/30/12/125006
Chen, I.C., Wang, C.J., Wen, C.K., Tzou, S.J.: Multi-person pose estimation using thermal images. IEEE Access 8, 174964–174971 (2020). https://doi.org/10.1109/ACCESS.2020.3025413
Chern, A., Knöppel, F., Pinkall, U., Schröder, P.: Shape from metric. ACM Trans. Graph. 37(4) (2018). https://doi.org/10.1145/3197517.3201276
Dashpute, A., et al.: Thermal spread functions (TSF): physics-guided material classification. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023). https://doi.org/10.1109/cvpr52729.2023.00164
Dellaert, F., Seitz, S., Thorpe, C., Thrun, S.: Structure from motion without correspondence. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), vol. 2, pp. 557–564 (2000). https://doi.org/10.1109/CVPR.2000.854916
Eren, G., et al.: Scanning from heating: 3D shape estimation of transparent objects from local surface heating. Opt. Express 17(14), 11457–11468 (2009). https://doi.org/10.1364/OE.17.011457
Forsyth, D.A.: Shape from texture without boundaries. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 225–239. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47977-5_15
Frankot, R., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 439–451 (1988). https://doi.org/10.1109/34.3909
Fu, C., Hu, Y., Wu, X., Shi, H., Mei, T., He, R.: CM-NAS: cross-modality neural architecture search for visible-infrared person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11823–11832 (2021)
Gan, L., Lee, C., Chung, S.J.: Unsupervised RGB-to-thermal domain adaptation via multi-domain attention network. In: 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2023). https://doi.org/10.1109/icra48891.2023.10160872
Garrido, I., Lagüela, S., Otero, R., Arias, P.: Thermographic methodologies used in infrastructure inspection: a review–post-processing procedures. Appl. Energy 266, 114857 (2020). https://doi.org/10.1016/j.apenergy.2020.114857
Goes, F.D., Memari, P., Mullen, P., Desbrun, M.: Weighted triangulations for geometry processing. ACM Trans. Graph. 33(3) (2014). https://doi.org/10.1145/2602143
Gordon, C., Webb, D.L., Wolpert, S.: One cannot hear the shape of a drum. Bull. Am. Math. Soc. 27(1), 134–138 (1992). https://doi.org/10.1090/s0273-0979-1992-00289-6
Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica, 1st edn. CRC Press Inc, Boca Raton (1996)
Hildebrandt, C., Raschner, C., Ammer, K.: An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors 10(5), 4700–4715 (2010). https://doi.org/10.3390/s100504700
Huo, D., Wang, J., Qian, Y., Yang, Y.H.: Glass segmentation with RGB-thermal image pairs. Trans. Img. Proc. 32, 1911–1926 (2023). https://doi.org/10.1109/TIP.2023.3256762
Iwasawa, S., Ebihara, K., Ohya, J., Morishima, S.: Real-time estimation of human body posture from monocular thermal images. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 15–20 (1997). https://doi.org/10.1109/CVPR.1997.609290
Kac, M.: Can one hear the shape of a drum? Am. Math. Mon. 73(4P2), 1–23 (1966). https://doi.org/10.1080/00029890.1966.11970915
Kadambi, A., Taamazyan, V., Shi, B., Raskar, R.: Polarized 3D: high-quality depth sensing with polarization cues. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3370–3378 (2015). https://doi.org/10.1109/ICCV.2015.385
Kerr, E., McGinnity, T., Coleman, S.: Material classification based on thermal properties - a robot and human evaluation. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1048–1053 (2013). https://doi.org/10.1109/ROBIO.2013.6739602
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)
Kütük, Z., Algan, G.: Semantic segmentation for thermal images: a comparative survey. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 286–295 (2022)
Liu, R., Vondrick, C.: Humans as light bulbs: 3D human reconstruction from thermal reflection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12531–12542 (2023)
Maeda, T., Wang, Y., Raskar, R., Kadambi, A.: Thermal non-line-of-sight imaging. In: 2019 IEEE International Conference on Computational Photography (ICCP), pp. 1–11 (2019). https://doi.org/10.1109/ICCPHOT.2019.8747343
Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05105-4_2
Miyazaki, D., Tan, R.T., Hara, K., Ikeuchi, K.: Polarization-based inverse rendering from a single view. In: Proceedings Ninth IEEE International Conference on Computer Vision, vol. 2, pp. 982–987 (2003). https://doi.org/10.1109/ICCV.2003.1238455
Miyazaki, D., Saito, M., Sato, Y., Ikeuchi, K.: Determining surface orientations of transparent objects based on polarization degrees in visible and infrared wavelengths. J. Opt. Soc. Am. A 19(4), 687–694 (2002). https://doi.org/10.1364/JOSAA.19.000687
Nagase, Y., Kushida, T., Tanaka, K., Funatomi, T., Mukaigawa, Y.: Shape from thermal radiation: passive ranging using multi-spectral LWIR measurements. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12651–12661 (2022). https://doi.org/10.1109/CVPR52688.2022.01233
Nicolet, B., Jacobson, A., Jakob, W.: Large steps in inverse rendering of geometry. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 40(6) (2021). https://doi.org/10.1145/3478513.3480501
Park, H., Lee, S., Lee, J., Ham, B.: Learning by aligning: visible-infrared person re-identification using cross-modal correspondences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12046–12055 (2021)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library (2019)
Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)
Ramanagopal, M., Narayanan, S., Sankaranarayanan, A.C., Narasimhan, S.G.: A theory of joint light and heat transport for lambertian scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11924–11933 (2024)
Ravi, N., et al.: Accelerating 3D deep learning with PyTorch3D. arXiv:2007.08501 (2020)
Riba, J.R., Canals, T., Cantero, R.: Recovered paperboard samples identification by means of mid-infrared sensors. IEEE Sens. J. 13(7), 2763–2770 (2013). https://doi.org/10.1109/JSEN.2013.2257943
Rivadeneira, R.E., et al.: Thermal image super-resolution challenge results - PBVS 2022. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 417–425 (2022). https://doi.org/10.1109/CVPRW56347.2022.00057
Salamati, N., Fredembach, C., Süsstrunk, S.: Material classification using color and NIR images. In: Color and Imaging Conference, vol. 17 (2009). https://doi.org/10.2352/CIC.2009.17.1.art00040
Salvi, J., Fernandez, S., Pribanic, T., Llado, X.: A state of the art in structured light patterns for surface profilometry. Pattern Recogn. 43(8), 2666–2680 (2010). https://doi.org/10.1016/j.patcog.2010.03.004
Saponaro, P., Sorensen, S., Kolagunda, A., Kambhamettu, C.: Material classification with thermal imagery. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4649–4656 (2015). https://doi.org/10.1109/CVPR.2015.7299096
Sheinin, M., Sankaranarayanan, A., Narasimhan, S.G.: Projecting trackable thermal patterns for dynamic computer vision. In: Proceedings of IEEE/CVF CVPR (2024)
Shin, U., Park, J., Kweon, I.S.: Deep depth estimation from thermal image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1043–1053 (2023)
Solomon, J., Crane, K., Vouga, E.: Laplace-beltrami: the swiss army knife of geometry processing. In: Symposium on Geometry Processing Graduate School, Cardiff, UK (2014)
Srinivasan Ramanagopal, M., Zhang, Z., Vasudevan, R., Johnson Roberson, M.: Pixel-wise motion deblurring of thermal videos. In: Robotics: Science and Systems XVI. RSS2020, Robotics: Science and Systems Foundation (2020). https://doi.org/10.15607/rss.2020.xvi.022
Tanaka, K., et al.: Time-resolved far infrared light transport decomposition for thermal photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 2075–2085 (2021). https://doi.org/10.1109/TPAMI.2019.2959304
Tang, Z., Ye, W., Ma, W.C., Zhao, H.: What happened 3 seconds ago? Inferring the past with thermal imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17111–17120 (2023)
Treptow, A., Cielniak, G., Duckett, T.: Real-time people tracking for mobile robots using thermal vision. Robot. Auton. Syst. 54(9), 729–739 (2006). https://doi.org/10.1016/j.robot.2006.04.013. Selected papers from the 2nd European Conference on Mobile Robots (ECMR ’05)
Vollmer, M., Mllmann, K.P.: Some Basic Concepts in Heat Transfer, chap. 4, pp. 351–392. Wiley (2017). https://doi.org/10.1002/9783527693306.ch4
Wei, Z., Yang, X., Wang, N., Gao, X.: Syncretic modality collaborative learning for visible infrared person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 225–234 (2021)
Woodham, R.J.: Photometric Method for Determining Surface Orientation from Multiple Images, pp. 513–531. MIT Press, Cambridge (1989)
Zeng, W., Guo, R., Luo, F., Gu, X.: Discrete heat kernel determines discrete riemannian metric. Graph. Models 74(4), 121–129 (2012). https://doi.org/10.1016/j.gmod.2012.03.009
Zhang, P., Zhao, J., Wang, D., Lu, H., Ruan, X.: Visible-thermal UAV tracking: a large-scale benchmark and new baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8886–8895 (2022)
Acknowledgements
This work was partly supported by NSF grants IIS-2107236, CCF-1730147, and NSF-NIFA AI Institute for Resilient Agriculture. Thanks to Keenan Crane for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Narayanan, S., Ramanagopal, M., Sheinin, M., Sankaranarayanan, A.C., Narasimhan, S.G. (2025). Shape from Heat Conduction. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15096. Springer, Cham. https://doi.org/10.1007/978-3-031-72920-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-72920-1_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72919-5
Online ISBN: 978-3-031-72920-1
eBook Packages: Computer ScienceComputer Science (R0)