Abstract
Gait recognition is to seek correct matches for query individuals by their unique walking patterns. However, current methods focus solely on extracting individual-specific features, overlooking “interpersonal” relationships. In this paper, we propose a novel Relation Descriptor that captures not only individual features but also relations between test gaits and pre-selected gait anchors. Specifically, we reinterpret classifier weights as gait anchors and compute similarity scores between test features and these anchors, which re-expresses individual gait features into a similarity relation distribution. In essence, the relation descriptor offers a holistic perspective that leverages the collective knowledge stored within the classifier’s weights, emphasizing meaningful patterns and enhancing robustness. Despite its potential, relation descriptor poses dimensionality challenges since its dimension depends on the training set’s identity count. To address this, we propose Farthest gait-Anchor Selection to identify the most discriminative gait anchors and an Orthogonal Regularization Loss to increase diversity within gait anchors. Compared to individual-specific features extracted from the backbone, our relation descriptor can boost the performance nearly without any extra costs. We evaluate the effectiveness of our method on the popular GREW, Gait3D, OU-MVLP, CASIA-B, and CCPG, showing that our method consistently outperforms the baselines and achieves state-of-the-art performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ariyanto, G., Nixon, M.S.: Model-based 3D gait biometrics. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–7 (2011)
Bendale, A., Boult, T.E.: Towards open set deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1563–1572 (2016)
Bodor, R., Drenner, A., Fehr, D., Masoud, O., Papanikolopoulos, N.: View-independent human motion classification using image-based reconstruction. Image Vision Comput. 27(8), 1194–1206 (2009)
Cen, J., et al.: The devil is in the wrongly-classified samples: towards unified open-set recognition. arXiv preprint arXiv:2302.04002 (2023)
Chai, T., Mei, X., Li, A., Wang, Y.: Silhouette-based view-embeddings for gait recognition under multiple views. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 2319–2323. IEEE (2021)
Chao, H., Wang, K., He, Y., Zhang, J., Feng, J.: GaitSet: cross-view gait recognition through utilizing gait as a deep set. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3467–3478 (2021)
Cheng, S., Wang, Y., Huang, H., Liu, D., Fan, H., Liu, S.: NBNet: noise basis learning for image denoising with subspace projection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4896–4906 (2021)
Dou, H., Zhang, P., Su, W., Yu, Y., Li, X.: MetaGait: learning to learn an omni sample adaptive representation for gait recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13665, pp. 357–374. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20065-6_21
Dou, H., Zhang, P., Su, W., Yu, Y., Lin, Y., Li, X.: GaitGCI: generative counterfactual intervention for gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5578–5588 (2023)
Fan, C., Hou, S., Huang, Y., Yu, S.: Exploring deep models for practical gait recognition. arXiv preprint arXiv:2303.03301 (2023)
Fan, C., Liang, J., Shen, C., Hou, S., Huang, Y., Yu, S.: OpenGait: revisiting gait recognition towards better practicality. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9707–9716 (2023)
Fan, C., et al.: GaitPart: temporal part-based model for gait recognition. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14213–14221 (2020)
Fu, Y., Meng, S., Hou, S., Hu, X., Huang, Y.: GPGait: generalized pose-based gait recognition. arXiv preprint arXiv:2303.05234 (2023)
Ge, Z., Demyanov, S., Chen, Z., Garnavi, R.: Generative OpenMax for multi-class open set classification. arXiv preprint arXiv:1707.07418 (2017)
Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4367–4375 (2018)
Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)
Hill, C.N., Reed, W., Schmitt, D., Sands, L.P., Queen, R.M.: Racial differences in gait mechanics. J. Biomech. 112, 110070 (2020)
Hou, S., Cao, C., Liu, X., Huang, Y.: Gait lateral network: learning discriminative and compact representations for gait recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 382–398. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_22
Huang, X., et al.: Context-sensitive temporal feature learning for gait recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12909–12918 (2021)
Jaggar, A.M.: Feminist Politics and Human Nature. Rowman & Littlefield (1983)
Kusakunniran, W., Wu, Q., Li, H., Zhang, J.: Multiple views gait recognition using view transformation model based on optimized gait energy image. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 1058–1064 (2009)
Li, W., et al.: An in-depth exploration of person re-identification and gait recognition in cloth-changing conditions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13824–13833 (2023)
Liao, R., Yu, S., An, W., Huang, Y.: A model-based gait recognition method with body pose and human prior knowledge. Pattern Recogn. 98, 107069 (2020)
Lin, B., Zhang, S., Wang, M., Li, L., Yu, X.: GaitGL: learning discriminative global-local feature representations for gait recognition. arXiv preprint arXiv:2208.01380 (2022)
Lin, B., Zhang, S., Yu, X.: Gait recognition via effective global-local feature representation and local temporal aggregation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14648–14656 (2021)
Luo, H., et al.: A strong baseline and batch normalization neck for deep person re-identification. IEEE Trans. Multimed. 22(10), 2597–2609 (2019)
Miller, D., Sunderhauf, N., Milford, M., Dayoub, F.: Class anchor clustering: a loss for distance-based open set recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3570–3578 (2021)
Neal, L., Olson, M., Fern, X., Wong, W.K., Li, F.: Open set learning with counterfactual images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 613–628 (2018)
Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2012)
Schlachter, P., Liao, Y., Yang, B.: Open-set recognition using intra-class splitting. In: 2019 27th European Signal Processing Conference (EUSIPCO), pp. 1–5. IEEE (2019)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)
Shen, C., Yu, S., Wang, J., Huang, G.Q., Wang, L.: A comprehensive survey on deep gait recognition: algorithms, datasets and challenges. arXiv preprint arXiv:2206.13732 (2022)
Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: GEINet: view-invariant gait recognition using a convolutional neural network. In: 2016 International Conference on Biometrics (ICB), pp. 1–8 (2016)
Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vision Appl. 10(1) (2018)
Teepe, T., Khan, A., Gilg, J., Herzog, F., Hörmann, S., Rigoll, G.: GaitGraph: graph convolutional network for skeleton-based gait recognition. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 2314–2318. IEEE (2021)
Vaze, S., Han, K., Vedaldi, A., Zisserman, A.: Open-set recognition: a good closed-set classifier is all you need? arXiv preprint arXiv:2110.06207 (2021)
Wang, G., Yuan, Y., Chen, X., Li, J., Zhou, X.: Learning discriminative features with multiple granularities for person re-identification. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 274–282 (2018)
Wang, J., et al.: Causal intervention for sparse-view gait recognition. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 77–85 (2023)
Wang, M., et al.: DyGait: exploiting dynamic representations for high-performance gait recognition. arXiv preprint arXiv:2303.14953 (2023)
Wang, Z., et al.: QAGait: Revisit gait recognition from a quality perspective. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 5785–5793 (2024)
Wang, Z., et al.: LandMarkGait: intrinsic human parsing for gait recognition. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 2305–2314 (2023)
Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part VII. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31
Wu, Q., Xiao, R., Xu, K., Ni, J., Li, B., Xu, Z.: GaitFormer: revisiting intrinsic periodicity for gait recognition. arXiv preprint arXiv:2307.13259 (2023)
Wu, Z., Huang, Y., Wang, L., Wang, X., Tan, T.: A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 209–226 (2016)
Xiong, Y., Liu, W., Zhao, D., Tang, X.: Face recognition via archetype hull ranking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 585–592 (2013)
Yu, S., Chen, H., Reyes, E.B.G., Poh, N.: GaitGAN: invariant gait feature extraction using generative adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 532–539 (2017)
Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 4, pp. 441–444. IEEE (2006)
Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Zhao, G., Liu, G., Li, H., Pietikainen, M.: 3D gait recognition using multiple cameras. In: 7th International Conference on Automatic Face and Gesture Recognition (FGR06), pp. 529–534. IEEE (2006)
Zheng, J., et al.: Gait recognition in the wild with multi-hop temporal switch. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 6136–6145 (2022)
Zheng, J., Liu, X., Liu, W., He, L., Yan, C., Mei, T.: Gait recognition in the wild with dense 3D representations and a benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20228–20237 (2022)
Zhu, Z., et al.: Gait recognition in the wild: a benchmark. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14789–14799 (2021)
Acknowledgment
This work was jointly supported by National Key R&D Program of China (2022ZD0117900), National Natural Science Foundation of China (62236010, 62322607, 62276261, 62276025 and 62206022), Beijing Municipal Science & Technology Commission (Z231100007423015) and Shenzhen Technology Plan Program (KQTD20170331093217368).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, J. et al. (2025). Free Lunch for Gait Recognition: A Novel Relation Descriptor. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15096. Springer, Cham. https://doi.org/10.1007/978-3-031-72920-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-72920-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72919-5
Online ISBN: 978-3-031-72920-1
eBook Packages: Computer ScienceComputer Science (R0)