Skip to main content

Free Lunch for Gait Recognition: A Novel Relation Descriptor

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Gait recognition is to seek correct matches for query individuals by their unique walking patterns. However, current methods focus solely on extracting individual-specific features, overlooking “interpersonal” relationships. In this paper, we propose a novel Relation Descriptor that captures not only individual features but also relations between test gaits and pre-selected gait anchors. Specifically, we reinterpret classifier weights as gait anchors and compute similarity scores between test features and these anchors, which re-expresses individual gait features into a similarity relation distribution. In essence, the relation descriptor offers a holistic perspective that leverages the collective knowledge stored within the classifier’s weights, emphasizing meaningful patterns and enhancing robustness. Despite its potential, relation descriptor poses dimensionality challenges since its dimension depends on the training set’s identity count. To address this, we propose Farthest gait-Anchor Selection to identify the most discriminative gait anchors and an Orthogonal Regularization Loss to increase diversity within gait anchors. Compared to individual-specific features extracted from the backbone, our relation descriptor can boost the performance nearly without any extra costs. We evaluate the effectiveness of our method on the popular GREW, Gait3D, OU-MVLP, CASIA-B, and CCPG, showing that our method consistently outperforms the baselines and achieves state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ariyanto, G., Nixon, M.S.: Model-based 3D gait biometrics. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–7 (2011)

    Google Scholar 

  2. Bendale, A., Boult, T.E.: Towards open set deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1563–1572 (2016)

    Google Scholar 

  3. Bodor, R., Drenner, A., Fehr, D., Masoud, O., Papanikolopoulos, N.: View-independent human motion classification using image-based reconstruction. Image Vision Comput. 27(8), 1194–1206 (2009)

    Article  Google Scholar 

  4. Cen, J., et al.: The devil is in the wrongly-classified samples: towards unified open-set recognition. arXiv preprint arXiv:2302.04002 (2023)

  5. Chai, T., Mei, X., Li, A., Wang, Y.: Silhouette-based view-embeddings for gait recognition under multiple views. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 2319–2323. IEEE (2021)

    Google Scholar 

  6. Chao, H., Wang, K., He, Y., Zhang, J., Feng, J.: GaitSet: cross-view gait recognition through utilizing gait as a deep set. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3467–3478 (2021)

    Google Scholar 

  7. Cheng, S., Wang, Y., Huang, H., Liu, D., Fan, H., Liu, S.: NBNet: noise basis learning for image denoising with subspace projection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4896–4906 (2021)

    Google Scholar 

  8. Dou, H., Zhang, P., Su, W., Yu, Y., Li, X.: MetaGait: learning to learn an omni sample adaptive representation for gait recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13665, pp. 357–374. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20065-6_21

    Chapter  Google Scholar 

  9. Dou, H., Zhang, P., Su, W., Yu, Y., Lin, Y., Li, X.: GaitGCI: generative counterfactual intervention for gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5578–5588 (2023)

    Google Scholar 

  10. Fan, C., Hou, S., Huang, Y., Yu, S.: Exploring deep models for practical gait recognition. arXiv preprint arXiv:2303.03301 (2023)

  11. Fan, C., Liang, J., Shen, C., Hou, S., Huang, Y., Yu, S.: OpenGait: revisiting gait recognition towards better practicality. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9707–9716 (2023)

    Google Scholar 

  12. Fan, C., et al.: GaitPart: temporal part-based model for gait recognition. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14213–14221 (2020)

    Google Scholar 

  13. Fu, Y., Meng, S., Hou, S., Hu, X., Huang, Y.: GPGait: generalized pose-based gait recognition. arXiv preprint arXiv:2303.05234 (2023)

  14. Ge, Z., Demyanov, S., Chen, Z., Garnavi, R.: Generative OpenMax for multi-class open set classification. arXiv preprint arXiv:1707.07418 (2017)

  15. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4367–4375 (2018)

    Google Scholar 

  16. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)

    Article  Google Scholar 

  17. Hill, C.N., Reed, W., Schmitt, D., Sands, L.P., Queen, R.M.: Racial differences in gait mechanics. J. Biomech. 112, 110070 (2020)

    Article  Google Scholar 

  18. Hou, S., Cao, C., Liu, X., Huang, Y.: Gait lateral network: learning discriminative and compact representations for gait recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 382–398. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_22

    Chapter  Google Scholar 

  19. Huang, X., et al.: Context-sensitive temporal feature learning for gait recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12909–12918 (2021)

    Google Scholar 

  20. Jaggar, A.M.: Feminist Politics and Human Nature. Rowman & Littlefield (1983)

    Google Scholar 

  21. Kusakunniran, W., Wu, Q., Li, H., Zhang, J.: Multiple views gait recognition using view transformation model based on optimized gait energy image. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 1058–1064 (2009)

    Google Scholar 

  22. Li, W., et al.: An in-depth exploration of person re-identification and gait recognition in cloth-changing conditions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13824–13833 (2023)

    Google Scholar 

  23. Liao, R., Yu, S., An, W., Huang, Y.: A model-based gait recognition method with body pose and human prior knowledge. Pattern Recogn. 98, 107069 (2020)

    Article  Google Scholar 

  24. Lin, B., Zhang, S., Wang, M., Li, L., Yu, X.: GaitGL: learning discriminative global-local feature representations for gait recognition. arXiv preprint arXiv:2208.01380 (2022)

  25. Lin, B., Zhang, S., Yu, X.: Gait recognition via effective global-local feature representation and local temporal aggregation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14648–14656 (2021)

    Google Scholar 

  26. Luo, H., et al.: A strong baseline and batch normalization neck for deep person re-identification. IEEE Trans. Multimed. 22(10), 2597–2609 (2019)

    Article  Google Scholar 

  27. Miller, D., Sunderhauf, N., Milford, M., Dayoub, F.: Class anchor clustering: a loss for distance-based open set recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3570–3578 (2021)

    Google Scholar 

  28. Neal, L., Olson, M., Fern, X., Wong, W.K., Li, F.: Open set learning with counterfactual images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 613–628 (2018)

    Google Scholar 

  29. Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2012)

    Article  Google Scholar 

  30. Schlachter, P., Liao, Y., Yang, B.: Open-set recognition using intra-class splitting. In: 2019 27th European Signal Processing Conference (EUSIPCO), pp. 1–5. IEEE (2019)

    Google Scholar 

  31. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)

    Google Scholar 

  32. Shen, C., Yu, S., Wang, J., Huang, G.Q., Wang, L.: A comprehensive survey on deep gait recognition: algorithms, datasets and challenges. arXiv preprint arXiv:2206.13732 (2022)

  33. Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: GEINet: view-invariant gait recognition using a convolutional neural network. In: 2016 International Conference on Biometrics (ICB), pp. 1–8 (2016)

    Google Scholar 

  34. Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vision Appl. 10(1) (2018)

    Google Scholar 

  35. Teepe, T., Khan, A., Gilg, J., Herzog, F., Hörmann, S., Rigoll, G.: GaitGraph: graph convolutional network for skeleton-based gait recognition. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 2314–2318. IEEE (2021)

    Google Scholar 

  36. Vaze, S., Han, K., Vedaldi, A., Zisserman, A.: Open-set recognition: a good closed-set classifier is all you need? arXiv preprint arXiv:2110.06207 (2021)

  37. Wang, G., Yuan, Y., Chen, X., Li, J., Zhou, X.: Learning discriminative features with multiple granularities for person re-identification. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 274–282 (2018)

    Google Scholar 

  38. Wang, J., et al.: Causal intervention for sparse-view gait recognition. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 77–85 (2023)

    Google Scholar 

  39. Wang, M., et al.: DyGait: exploiting dynamic representations for high-performance gait recognition. arXiv preprint arXiv:2303.14953 (2023)

  40. Wang, Z., et al.: QAGait: Revisit gait recognition from a quality perspective. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 5785–5793 (2024)

    Google Scholar 

  41. Wang, Z., et al.: LandMarkGait: intrinsic human parsing for gait recognition. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 2305–2314 (2023)

    Google Scholar 

  42. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part VII. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  43. Wu, Q., Xiao, R., Xu, K., Ni, J., Li, B., Xu, Z.: GaitFormer: revisiting intrinsic periodicity for gait recognition. arXiv preprint arXiv:2307.13259 (2023)

  44. Wu, Z., Huang, Y., Wang, L., Wang, X., Tan, T.: A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 209–226 (2016)

    Article  Google Scholar 

  45. Xiong, Y., Liu, W., Zhao, D., Tang, X.: Face recognition via archetype hull ranking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 585–592 (2013)

    Google Scholar 

  46. Yu, S., Chen, H., Reyes, E.B.G., Poh, N.: GaitGAN: invariant gait feature extraction using generative adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 532–539 (2017)

    Google Scholar 

  47. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 4, pp. 441–444. IEEE (2006)

    Google Scholar 

  48. Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  49. Zhao, G., Liu, G., Li, H., Pietikainen, M.: 3D gait recognition using multiple cameras. In: 7th International Conference on Automatic Face and Gesture Recognition (FGR06), pp. 529–534. IEEE (2006)

    Google Scholar 

  50. Zheng, J., et al.: Gait recognition in the wild with multi-hop temporal switch. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 6136–6145 (2022)

    Google Scholar 

  51. Zheng, J., Liu, X., Liu, W., He, L., Yan, C., Mei, T.: Gait recognition in the wild with dense 3D representations and a benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20228–20237 (2022)

    Google Scholar 

  52. Zhu, Z., et al.: Gait recognition in the wild: a benchmark. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14789–14799 (2021)

    Google Scholar 

Download references

Acknowledgment

This work was jointly supported by National Key R&D Program of China (2022ZD0117900), National Natural Science Foundation of China (62236010, 62322607, 62276261, 62276025 and 62206022), Beijing Municipal Science & Technology Commission (Z231100007423015) and Shenzhen Technology Plan Program (KQTD20170331093217368).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J. et al. (2025). Free Lunch for Gait Recognition: A Novel Relation Descriptor. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15096. Springer, Cham. https://doi.org/10.1007/978-3-031-72920-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72920-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72919-5

  • Online ISBN: 978-3-031-72920-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics