Abstract
This paper presents a novel approach for reconstructing dynamic radiance fields from monocular videos. We integrate kinematics with dynamic radiance fields, bridging the gap between the sparse nature of monocular videos and the real-world physics. Our method introduces the kinematic field, capturing motion through kinematic quantities: velocity, acceleration, and jerk. The kinematic field is jointly learned with the dynamic radiance field by minimizing the photometric loss without motion ground truth. We further augment our method with physics-driven regularizers grounded in kinematics. We propose physics-driven regularizers that ensure the physical validity of predicted kinematic quantities, including advective acceleration and jerk. Additionally, we control the motion trajectory based on rigidity equations formed with the predicted kinematic quantities. In experiments, our method outperforms the state-of-the-arts by capturing physical motion patterns within challenging real-world monocular videos.
W. Im—This work was done during an internship at NAVER Cloud.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(f'(x)= \frac{f(x+\epsilon ) - f(x-\epsilon )}{2\epsilon }\).
References
Attal, B., et al.: HyperReel: high-fidelity 6-DoF video with ray-conditioned sampling. arXiv preprint arXiv:2301.02238 (2023)
Baieri, D., Esposito, S., Maggioli, F., Rodolà, E.: Fluid dynamics network: topology-agnostic 4d reconstruction via fluid dynamics priors. arXiv preprint arXiv:2303.09871 (2023)
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vision 92, 1–31 (2011)
Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-nerf: a multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864 (2021)
Cao, A., Johnson, J.: HexPlane: a fast representation for dynamic scenes. arXiv preprint arXiv:2301.09632 (2023)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022, ECCV 2022, LNCS, Part XXXII, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20
Chu, M., et al.: Physics informed neural fields for smoke reconstruction with sparse data. ACM Trans. Graph. (TOG) 41(4), 1–14 (2022)
Du, Y., Zhang, Y., Yu, H.X., Tenenbaum, J.B., Wu, J.: Neural radiance flow for 4d view synthesis and video processing. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14304–14314. IEEE Computer Society (2021)
Fang, J., et al.: Fast dynamic radiance fields with time-aware neural voxels. In: SIGGRAPH Asia 2022 Conference Papers, pp. 1–9 (2022)
Gao, C., Saraf, A., Kopf, J., Huang, J.B.: Dynamic view synthesis from dynamic monocular video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5712–5721, October 2021
Gao, H., Li, R., Tulsiani, S., Russell, B., Kanazawa, A.: Monocular dynamic view synthesis: a reality check. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in Neural Information Processing Systems (2022). https://openreview.net/forum?id=pCrB8orUkSq
Hart-Smith, L.: Application of the strain invariant failure theory (sift) to metals and fiber-polymer composites. Phil. Mag. 90(31–32), 4263–4331 (2010)
Hess, R., Baker, C., Zihl, J.: The motion-blind patient: low-level spatial and temporal filters. J. Neurosci. 9(5), 1628–1640 (1989)
Jin, H., et al.: TensoIR: tensorial inverse rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)
Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. In: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, pp. 165–174 (1984)
Li, T., et al.: Neural 3d video synthesis from multi-view video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5521–5531 (2022)
Li, Z., et al.: Neuralangelo: high-fidelity neural surface reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8456–8465 (2023)
Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6508 (2021)
Li, Z., Wang, Q., Cole, F., Tucker, R., Snavely, N.: DynIBaR: neural dynamic image-based rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4273–4284 (2023)
Liu, Y.L., et al.: Robust dynamic radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13–23, June 2023
Luo, X., Huang, J.B., Szeliski, R., Matzen, K., Kopf, J.: Consistent video depth estimation. ACM Trans. Graph. (ToG) 39(4), 71–1 (2020)
Max, N., Chen, M.: Local and global illumination in the volume rendering integral. Technical Report, Lawrence Livermore National Lab.(LLNL), Livermore, CA, United States (2005)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. In: ECCV (2020)
Orts-Escolano, S., et al.: Holoportation: Virtual 3d teleportation in real-time. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 741–754 (2016)
Park, K., et al.: Nerfies: deformable neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874 (2021)
Park, K., et al.: Hypernerf: a higher-dimensional representation for topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228 (2021)
Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)
Ramasinghe, S., Shevchenko, V., Avraham, G., Hengel, A.V.D.: Bali-RF: bandlimited radiance fields for dynamic scene modeling. arXiv preprint arXiv:2302.13543 (2023)
Soria, J., Sondergaard, R., Cantwell, B., Chong, M., Perry, A.: A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6(2), 871–884 (1994)
Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vision 106, 115–137 (2014)
Tretschk, E., Tewari, A., Golyanik, V., Zollhöfer, M., Lassner, C., Theobalt, C.: Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a dynamic scene from monocular video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12959–12970 (2021)
Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-nerf: structured view-dependent appearance for neural radiance fields. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5481–5490. IEEE (2022)
Wang, C., Eckart, B., Lucey, S., Gallo, O.: Neural trajectory fields for dynamic novel view synthesis. arXiv preprint arXiv:2105.05994 (2021)
Wang, C., MacDonald, L.E., Jeni, L.A., Lucey, S.: Flow supervision for deformable nerf. arXiv preprint arXiv:2303.16333 (2023)
Wu, T., Zhong, F., Tagliasacchi, A., Cole, F., Oztireli, C.: D \(\hat{\,}\) 2nerf: self-supervised decoupling of dynamic and static objects from a monocular video. In: Advances in Neural Information Processing Systems, vol. 35, pp. 32653–32666 (2022)
Yoon, J.S., Kim, K., Gallo, O., Park, H.S., Kautz, J.: Novel view synthesis of dynamic scenes with globally coherent depths from a monocular camera. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5336–5345 (2020)
Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: analyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020)
Acknowledgment
This project was partly supported by the NAVER Cloud Corporation. Additionally, this work received support from the Institute of Information & communications Technology Planning & Evaluation (IITP) grant (RS-2023-00237965) and the National Research Foundation of Korea (NRF) grant (No. RS-2023-00208506(2024)), funded by the Korea government (MSIT).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Im, W. et al. (2025). Regularizing Dynamic Radiance Fields with Kinematic Fields. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15097. Springer, Cham. https://doi.org/10.1007/978-3-031-72933-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-72933-1_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72932-4
Online ISBN: 978-3-031-72933-1
eBook Packages: Computer ScienceComputer Science (R0)