Skip to main content

Regularizing Dynamic Radiance Fields with Kinematic Fields

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15097))

Included in the following conference series:

  • 378 Accesses

Abstract

This paper presents a novel approach for reconstructing dynamic radiance fields from monocular videos. We integrate kinematics with dynamic radiance fields, bridging the gap between the sparse nature of monocular videos and the real-world physics. Our method introduces the kinematic field, capturing motion through kinematic quantities: velocity, acceleration, and jerk. The kinematic field is jointly learned with the dynamic radiance field by minimizing the photometric loss without motion ground truth. We further augment our method with physics-driven regularizers grounded in kinematics. We propose physics-driven regularizers that ensure the physical validity of predicted kinematic quantities, including advective acceleration and jerk. Additionally, we control the motion trajectory based on rigidity equations formed with the predicted kinematic quantities. In experiments, our method outperforms the state-of-the-arts by capturing physical motion patterns within challenging real-world monocular videos.

W. Im—This work was done during an internship at NAVER Cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(f'(x)= \frac{f(x+\epsilon ) - f(x-\epsilon )}{2\epsilon }\).

References

  1. Attal, B., et al.: HyperReel: high-fidelity 6-DoF video with ray-conditioned sampling. arXiv preprint arXiv:2301.02238 (2023)

  2. Baieri, D., Esposito, S., Maggioli, F., Rodolà, E.: Fluid dynamics network: topology-agnostic 4d reconstruction via fluid dynamics priors. arXiv preprint arXiv:2303.09871 (2023)

  3. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vision 92, 1–31 (2011)

    Article  Google Scholar 

  4. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-nerf: a multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864 (2021)

    Google Scholar 

  5. Cao, A., Johnson, J.: HexPlane: a fast representation for dynamic scenes. arXiv preprint arXiv:2301.09632 (2023)

  6. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022, ECCV 2022, LNCS, Part XXXII, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20

  7. Chu, M., et al.: Physics informed neural fields for smoke reconstruction with sparse data. ACM Trans. Graph. (TOG) 41(4), 1–14 (2022)

    Article  Google Scholar 

  8. Du, Y., Zhang, Y., Yu, H.X., Tenenbaum, J.B., Wu, J.: Neural radiance flow for 4d view synthesis and video processing. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14304–14314. IEEE Computer Society (2021)

    Google Scholar 

  9. Fang, J., et al.: Fast dynamic radiance fields with time-aware neural voxels. In: SIGGRAPH Asia 2022 Conference Papers, pp. 1–9 (2022)

    Google Scholar 

  10. Gao, C., Saraf, A., Kopf, J., Huang, J.B.: Dynamic view synthesis from dynamic monocular video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5712–5721, October 2021

    Google Scholar 

  11. Gao, H., Li, R., Tulsiani, S., Russell, B., Kanazawa, A.: Monocular dynamic view synthesis: a reality check. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in Neural Information Processing Systems (2022). https://openreview.net/forum?id=pCrB8orUkSq

  12. Hart-Smith, L.: Application of the strain invariant failure theory (sift) to metals and fiber-polymer composites. Phil. Mag. 90(31–32), 4263–4331 (2010)

    Article  Google Scholar 

  13. Hess, R., Baker, C., Zihl, J.: The motion-blind patient: low-level spatial and temporal filters. J. Neurosci. 9(5), 1628–1640 (1989)

    Article  Google Scholar 

  14. Jin, H., et al.: TensoIR: tensorial inverse rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)

    Google Scholar 

  15. Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. In: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, pp. 165–174 (1984)

    Google Scholar 

  16. Li, T., et al.: Neural 3d video synthesis from multi-view video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5521–5531 (2022)

    Google Scholar 

  17. Li, Z., et al.: Neuralangelo: high-fidelity neural surface reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8456–8465 (2023)

    Google Scholar 

  18. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6508 (2021)

    Google Scholar 

  19. Li, Z., Wang, Q., Cole, F., Tucker, R., Snavely, N.: DynIBaR: neural dynamic image-based rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4273–4284 (2023)

    Google Scholar 

  20. Liu, Y.L., et al.: Robust dynamic radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13–23, June 2023

    Google Scholar 

  21. Luo, X., Huang, J.B., Szeliski, R., Matzen, K., Kopf, J.: Consistent video depth estimation. ACM Trans. Graph. (ToG) 39(4), 71–1 (2020)

    Article  Google Scholar 

  22. Max, N., Chen, M.: Local and global illumination in the volume rendering integral. Technical Report, Lawrence Livermore National Lab.(LLNL), Livermore, CA, United States (2005)

    Google Scholar 

  23. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. In: ECCV (2020)

    Google Scholar 

  24. Orts-Escolano, S., et al.: Holoportation: Virtual 3d teleportation in real-time. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 741–754 (2016)

    Google Scholar 

  25. Park, K., et al.: Nerfies: deformable neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874 (2021)

    Google Scholar 

  26. Park, K., et al.: Hypernerf: a higher-dimensional representation for topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228 (2021)

  27. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)

    Google Scholar 

  28. Ramasinghe, S., Shevchenko, V., Avraham, G., Hengel, A.V.D.: Bali-RF: bandlimited radiance fields for dynamic scene modeling. arXiv preprint arXiv:2302.13543 (2023)

  29. Soria, J., Sondergaard, R., Cantwell, B., Chong, M., Perry, A.: A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6(2), 871–884 (1994)

    Article  Google Scholar 

  30. Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vision 106, 115–137 (2014)

    Article  Google Scholar 

  31. Tretschk, E., Tewari, A., Golyanik, V., Zollhöfer, M., Lassner, C., Theobalt, C.: Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a dynamic scene from monocular video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12959–12970 (2021)

    Google Scholar 

  32. Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-nerf: structured view-dependent appearance for neural radiance fields. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5481–5490. IEEE (2022)

    Google Scholar 

  33. Wang, C., Eckart, B., Lucey, S., Gallo, O.: Neural trajectory fields for dynamic novel view synthesis. arXiv preprint arXiv:2105.05994 (2021)

  34. Wang, C., MacDonald, L.E., Jeni, L.A., Lucey, S.: Flow supervision for deformable nerf. arXiv preprint arXiv:2303.16333 (2023)

  35. Wu, T., Zhong, F., Tagliasacchi, A., Cole, F., Oztireli, C.: D \(\hat{\,}\) 2nerf: self-supervised decoupling of dynamic and static objects from a monocular video. In: Advances in Neural Information Processing Systems, vol. 35, pp. 32653–32666 (2022)

    Google Scholar 

  36. Yoon, J.S., Kim, K., Gallo, O., Park, H.S., Kautz, J.: Novel view synthesis of dynamic scenes with globally coherent depths from a monocular camera. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5336–5345 (2020)

    Google Scholar 

  37. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: analyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020)

Download references

Acknowledgment

This project was partly supported by the NAVER Cloud Corporation. Additionally, this work received support from the Institute of Information & communications Technology Planning & Evaluation (IITP) grant (RS-2023-00237965) and the National Research Foundation of Korea (NRF) grant (No. RS-2023-00208506(2024)), funded by the Korea government (MSIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Eui Yoon .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 37211 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Im, W. et al. (2025). Regularizing Dynamic Radiance Fields with Kinematic Fields. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15097. Springer, Cham. https://doi.org/10.1007/978-3-031-72933-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72933-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72932-4

  • Online ISBN: 978-3-031-72933-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics