Abstract
We propose the SAL (Segment Anything in Lidar) method consisting of a text-promptable zero-shot model for segmenting and classifying any object in Lidar, and a pseudo-labeling engine that facilitates model training without manual supervision. While the established paradigm for Lidar Panoptic Segmentation (LPS) relies on manual supervision for a handful of object classes defined a priori, we utilize 2D vision foundation models to generate 3D supervision “for free”. Our pseudo-labels consist of instance masks and corresponding CLIP tokens, which we lift to Lidar using calibrated multi-modal data. By training our model on these labels, we distill the 2D foundation models into our Lidar SAL model. Even without manual labels, our model achieves \(91\%\) in terms of class-agnostic segmentation and \(54\%\) in terms of zero-shot LPS of the fully supervised state-of-the-art. Furthermore, we outperform several baselines that do not distill but only lift image features to 3D. More importantly, we demonstrate that SAL supports arbitrary class prompts, can be easily extended to new datasets, and shows significant potential to improve with increasing amounts of self-labeled data. We release all models and the code.
A. Ošep and T. Meinhardt—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Agarwalla, A., et al.: Lidar panoptic segmentation and tracking without bells and whistles. In: International Conference on Intelligent Robots and Systems (2023)
Aksoy, E.E., Baci, S., Cavdar, S.: SalsaNet: fast road and vehicle segmentation in lidar point clouds for autonomous driving. In: Intelligent Vehicles Symposium (2020)
Aygün, M., et al.: 4D panoptic lidar segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)
Bansal, A., Sikka, K., Sharma, G., Chellappa, R., Divakaran, A.: Zero-shot object detection. In: European Conference on Computer Vision (2018)
Behley, J., et al.: SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences. In: International Conference on Computer Vision (2019)
Behley, J., Milioto, A., Stachniss, C.: A benchmark for LiDAR-based panoptic segmentation based on KITTI. In: International Conference on Robotics and Automation (2021)
Bucher, M., Vu, T.H., Cord, M., Pérez, P.: Zero-shot semantic segmentation. In: Advances in Neural Information Processing Systems (2019)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: European Conference on Computer Vision (2020)
Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: Advances in Neural Information Processing Systems (2020)
Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2022)
Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convnets: minkowski convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)
Ding, Z., Wang, J., Tu, Z.: Open-vocabulary universal image segmentation with maskclip. In: International Conference on Machine Learning (2023)
Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Robotics: Science and Systems (1996)
Fong, W.K., et al.: Panoptic nuScenes: a large-scale benchmark for lidar panoptic segmentation and tracking. IEEE Robot. Autom. Lett. 7, 3795–3802 (2021)
Gasperini, S., Mahani, M.A.N., Marcos-Ramiro, A., Navab, N., Tombari, F.: Panoster: end-to-end panoptic segmentation of lidar point clouds. IEEE Robot. Autom. Lett. 6, 3216–3223 (2021)
Ghiasi, G., Gu, X., Cui, Y., Lin, T.Y.: Scaling open-vocabulary image segmentation with image-level labels. In: European Conference on Computer Vision (2022)
Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision and language knowledge distillation. arXiv preprint arXiv:2104.13921 (2021)
Harley, A.W., et al.: Track, check, repeat: an EM approach to unsupervised tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)
Held, D., Guillory, D., Rebsamen, B., Thrun, S., Savarese, S.: A probabilistic framework for real-time 3D segmentation using spatial, temporal, and semantic cues. In: Robotics: Science and Systems (2016)
Held, D., Levinson, J., Thrun, S., Savarese, S.: Combining 3D shape, color, and motion for robust anytime tracking. In: Robotics: Science and Systems (2014)
Hong, F., Zhou, H., Zhu, X., Li, H., Liu, Z.: Lidar-based panoptic segmentation via dynamic shifting network. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)
Hu, P., Held, D., Ramanan, D.: Learning to optimally segment point clouds. IEEE Robot. Autom. Lett. 5(2), 875–882 (2020)
Hurtado, J.V., Mohan, R., Valada, A.: MOPT: multi-object panoptic tracking. arXiv preprint arXiv:2004.08189 (2020)
Kirillov, A., He, K., Girshick, R.B., Rother, C., Dollár, P.: Panoptic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
Kirillov, A., et al.: Segment anything. In: International Conference on Computer Vision (2023)
Kreuzberg, L., Zulfikar, I.E., Mahadevan, S., Engelmann, F., Leibe, B.: 4D-stop: panoptic segmentation of 4D lidar using spatio-temporal object proposal generation and aggregation. In: ECCV AVVision Workshop (2022)
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven semantic segmentation. In: International Conference on Learning Representations (2022)
Li, J., He, X., Wen, Y., Gao, Y., Cheng, Y., Zhang, D.: Panoptic-PHNet: towards real-time and high-precision lidar panoptic segmentation via clustering pseudo heatmap. In: IEEE Conference on Computer Vision and Pattern Recognition (2022)
Li, S., Chen, X., Liu, Y., Dai, D., Stachniss, C., Gall, J.: Multi-scale interaction for real-time lidar data segmentation on an embedded platform. IEEE Robot. Autom. Lett. 7(2), 738–745 (2021)
Liang, F., et al.: Open-vocabulary semantic segmentation with mask-adapted clip. In: IEEE Conference on Computer Vision and Pattern Recognition (2023)
Lin, T., et al.: Microsoft COCO: common objects in context. In: European Conference on Computer Vision (2014)
Lin, Z., Pathak, D., Wang, Y.X., Ramanan, D., Kong, S.: Continual learning with evolving class ontologies. In: Advances in Neural Information Processing Systems (2022)
Liu, Y., et al.: Segment any point cloud sequences by distilling vision foundation models. arXiv preprint arXiv:2306.09347 (2023)
Liu, Z., Zhang, Z., Cao, Y., Hu, H., Tong, X.: Group-free 3D object detection via transformers. In: International Conference on Computer Vision (2021)
Lu, Y., Jiang, Q., Chen, R., Hou, Y., Zhu, X., Ma, Y.: See more and know more: zero-shot point cloud segmentation via multi-modal visual data. In: International Conference on Computer Vision (2023)
Ma, Y., et al.: Long-tailed 3D detection via 2D late fusion. arXiv preprint arXiv:2312.10986 (2023)
Marcuzzi, R., Nunes, L., Wiesmann, L., Behley, J., Stachniss, C.: Mask-based panoptic lidar segmentation for autonomous driving. IEEE Robot. Autom. Lett. 8(2), 1141–1148 (2023)
Marcuzzi, R., Nunes, L., Wiesmann, L., Marks, E., Behley, J., Stachniss, C.: Mask4D: end-to-end mask-based 4D panoptic segmentation for lidar sequences. IEEE Robot. Autom. Lett. (2023)
Marcuzzi, R., Nunes, L., Wiesmann, L., Vizzo, I., Behley, J., Stachniss, C.: Contrastive instance association for 4D panoptic segmentation using sequences of 3D lidar scans. IEEE Robot. Autom. Lett. (2022)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: RangeNet++: fast and accurate LiDAR semantic segmentation. In: International Conference on Intelligent Robots and Systems (2019)
Miller, D., Nicholson, L., Dayoub, F., Sünderhauf, N.: Dropout sampling for robust object detection in open-set conditions. In: International Conference on Robotics and Automation (2018)
Moosmann, F., Stiller, C.: Joint self-localization and tracking of generic objects in 3D range data. In: International Conference on Robotics and Automation (2013)
Najibi, M., et al.: Motion inspired unsupervised perception and prediction in autonomous driving. In: European Conference on Computer Vision (2022)
Najibi, M., et al.: Unsupervised 3D perception with 2D vision-language distillation for autonomous driving. In: International Conference on Computer Vision (2023)
Nunes, L., Marcuzzi, R., Chen, X., Behley, J., Stachniss, C.: SegContrast: 3D point cloud feature representation learning through self-supervised segment discrimination. IEEE Robot. Autom. Lett. 7(2), 2116–2123 (2022)
Osep, A., Voigtlaender, P., Luiten, J., Breuers, S., Leibe, B.: Towards large-scale video video object mining. In: ECCV Workshop on Interactive and Adaptive Learning in an Open World (2018)
Ošep, A., Mehner, W., Voigtlaender, P., Leibe, B.: Track, then decide: category-agnostic vision-based multi-object tracking. In: International Conference on Robotics and Automation (2018)
Ošep, A., Voigtlaender, P., Luiten, J., Breuers, S., Leibe, B.: Large-scale object mining for object discovery from unlabeled video. In: International Conference on Robotics and Automation (2019)
Peng, S., Genova, K., Jiang, C., Tagliasacchi, A., Pollefeys, M., Funkhouser, T.: OpenScene: 3D scene understanding with open vocabularies. In: IEEE Conference on Computer Vision and Pattern Recognition (2023)
Peri, N., Dave, A., Ramanan, D., Kong, S.: Towards long-tailed 3D detection. In: Conference on Robot Learning (2023)
Peri, N., Li, M., Wilson, B., Wang, Y.X., Hays, J., Ramanan, D.: An empirical analysis of range for 3D object detection. In: ICCV Workshops (2023)
Peri, N., Luiten, J., Li, M., Ošep, A., Leal-Taixé, L., Ramanan, D.: Forecasting from lidar via future object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2022)
Petrovskaya, A., Thrun, S.: Model based vehicle detection and tracking for autonomous urban driving. Auton. Rob. 26, 123–139 (2009)
Pot, E., Toshev, A., Kosecka, J.: Self-supervisory signals for object discovery and detection. arXiv preprint arXiv:1806.03370 (2018)
Prest, A., Leistner, C., Civera, J., Schmid, C., Ferrari, V.: Learning object class detectors from weakly annotated video. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems (2017)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning (2021)
Rahman, S., Khan, S.H., Porikli, F.: Zero-shot object detection: learning to simultaneously recognize and localize novel concepts. In: Asian Conference on Computer Vision (2018)
Rao, Y., et al.: DenseCLIP: language-guided dense prediction with context-aware prompting. In: IEEE Conference on Computer Vision and Pattern Recognition (2022)
Razani, R., Cheng, R., Li, E., Taghavi, E., Ren, Y., Bingbing, L.: GP-S3Net: graph-based panoptic sparse semantic segmentation network. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)
Razani, R., Cheng, R., Taghavi, E., Bingbing, L.: Lite-HDSeg: lidar semantic segmentation using lite harmonic dense convolutions. In: International Conference on Robotics and Automation (2021)
Sautier, C., Puy, G., Gidaris, S., Boulch, A., Bursuc, A., Marlet, R.: Image-to-lidar self-supervised distillation for autonomous driving data. In: IEEE Conference on Computer Vision and Pattern Recognition (2022)
Seidenschwarz, J., Ošep, A., Ferroni, F., Lucey, S., Leal-Taixé, L.: SeMoLi: what moves together belongs together. In: IEEE Conference on Computer Vision and Pattern Recognition (2024)
Sirohi, K., Mohan, R., Büscher, D., Burgard, W., Valada, A.: EfficientLPS: efficient lidar panoptic segmentation. IEEE Trans. Robot. (2021)
Sun, P., et al.: Scalability in perception for autonomous driving: waymo open dataset. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)
Takmaz, A., Fedele, E., Sumner, R.W., Pollefeys, M., Tombari, F., Engelmann, F.: Openmask3D: open-vocabulary 3D instance segmentation. arXiv preprint arXiv:2306.13631 (2023)
Tang, H., et al.: Searching efficient 3D architectures with sparse point-voxel convolution. In: European Conference on Computer Vision (2020)
Teichman, A., Levinson, J., Thrun, S.: Towards 3D object recognition via classification of arbitrary object tracks. In: International Conference on Robotics and Automation (2011)
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: International Conference on Computer Vision (2019)
Thorpe, C., Herbert, M., Kanade, T., Shafer, S.: Toward autonomous driving: the CMU Navlab. I. perception. IEEE Expert 6(4), 31–42 (1991)
Thrun, S., et al.: Stanley: the robot that won the DARPA grand challenge. J. Field Robot. (2006)
Wang, Y., et al.: Train in Germany, test in the USA: making 3D object detectors generalize. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)
Wong, K., Wang, S., Ren, M., Liang, M., Urtasun, R.: Identifying unknown instances for autonomous driving. In: Conference on Robot Learning, pp. 384–393. PMLR (2020)
Wu, B., Wan, A., Yue, X., Keutzer, K.: SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D lidar point cloud. In: International Conference on Robotics and Automation (2018)
Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: SqueezeSegV2: improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In: International Conference on Robotics and Automation (2019)
Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning - a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal. Mach. Intell. 41, 2251–2265 (2018)
Xiong, X., Munoz, D., Bagnell, J.A., Hebert, M.: 3-D scene analysis via sequenced predictions over points and regions. In: International Conference on Robotics and Automation, pp. 2609–2616 (2011)
Xu, J., Liu, S., Vahdat, A., Byeon, W., Wang, X., De Mello, S.: Open-vocabulary panoptic segmentation with text-to-image diffusion models. In: IEEE Conference on Computer Vision and Pattern Recognition (2023)
Xu, M., Zhang, Z., Wei, F., Hu, H., Bai, X.: Side adapter network for open-vocabulary semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2023)
Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)
Yilmaz, K., Schult, J., Nekrasov, A., Leibe, B.: Mask4D: mask transformer for 4D panoptic segmentation. arXiv preprint arXiv:2309.16133 (2023)
Yin, T., Zhou, X., Krähenbühl, P.: Center-based 3D object detection and tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)
Zareian, A., Rosa, K.D., Hu, D.H., Chang, S.F.: Open-vocabulary object detection using captions. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)
Zhang, L., et al.: Towards unsupervised object detection from lidar point clouds. In: IEEE Conference on Computer Vision and Pattern Recognition (2023)
Zhong, Y., et al.: RegionCLIP: region-based language-image pretraining. In: IEEE Conference on Computer Vision and Pattern Recognition (2022)
Zhou, C., Loy, C.C., Dai, B.: Extract free dense labels from clip. In: European Conference on Computer Vision (2022)
Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
Zhou, Z., Zhang, Y., Foroosh, H.: Panoptic-polarnet: proposal-free lidar point cloud panoptic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)
Zhu, M., Han, S., Cai, H., Borse, S., Ghaffari, M., Porikli, F.: 4D panoptic segmentation as invariant and equivariant field prediction. In: IEEE Conference on Computer Vision and Pattern Recognition (2023)
Zhu, X., et al.: Cylindrical and asymmetrical 3D convolution networks for lidar segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)
Acknowledgments
This project was funded, in parts, by ERC Starting Grant DynAI (ERC-101043189). We are grateful to Žan Gojčič, Guillem Braso, Cristiano Saltori, Sérgio Agostinho, and Jonas Schult for their feedback on the paper and their insightful comments. Special thanks to Maxim Maximov for his help on figures.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ošep, A., Meinhardt, T., Ferroni, F., Peri, N., Ramanan, D., Leal-Taixé, L. (2025). Better Call SAL: Towards Learning to Segment Anything in Lidar. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15097. Springer, Cham. https://doi.org/10.1007/978-3-031-72933-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-72933-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72932-4
Online ISBN: 978-3-031-72933-1
eBook Packages: Computer ScienceComputer Science (R0)