Abstract
The advancements in neural rendering have increased the need for techniques that enable intuitive editing of 3D objects represented as neural implicit surfaces. This paper introduces a novel neural algorithm for parameterizing neural implicit surfaces to simple parametric domains like spheres and polycubes. Our method allows users to specify the number of cubes in the parametric domain, learning a configuration that closely resembles the target 3D object’s geometry. It computes bi-directional deformation between the object and the domain using a forward mapping from the object’s zero level set and an inverse deformation for backward mapping. We ensure nearly bijective mapping with a cycle loss and optimize deformation smoothness. The parameterization quality, assessed by angle and area distortions, is guaranteed using a Laplacian regularizer and an optimized learned parametric domain. Our framework integrates with existing neural rendering pipelines, using multi-view images of a single object or multiple objects of similar geometries to reconstruct 3D geometry and compute texture maps automatically, eliminating the need for any prior information. We demonstrate the method’s effectiveness on images of human heads and man-made objects. The source code is available at https://xubaixinxbx.github.io/neuparam.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bednarik, J., Parashar, S., Gundogdu, E., Salzmann, M., Fua, P.: Shape reconstruction by learning differentiable surface representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4716–4725 (2020)
Biermann, H., Martin, I., Bernardini, F., Zorin, D.: Cut-and-paste editing of multiresolution surfaces. ACM Trans. Graph. (TOG) 21(3), 312–321 (2002)
Degener, P., Meseth, J., Klein, R.: An adaptable surface parameterization method. IMR 3, 201–213 (2003)
Fan, Q., Yang, J., Hua, G., Chen, B., Wipf, D.: Revisiting deep intrinsic image decompositions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8944–8952 (2018)
Fang, H., Hart, J.C.: Textureshop: texture synthesis as a photograph editing tool. ACM Trans. Graph. (TOG) 23(3), 354–359 (2004)
Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186 (2005)
García, I., Xia, J., He, Y., Xin, S., Patow, G.: Interactive applications for sketch-based editable polycube map. IEEE Trans. Vis. Comput. Graph. 19(7), 1158–1171 (2013)
Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D meshes. ACM Trans. Graph. 22(3), 358–363 (2003)
Greene, N.: Environment mapping and other applications of world projections. IEEE Comput. Graph. Appl. 6(11), 21–29 (1986)
Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. In: International Conference on Machine Learning, pp. 3789–3799. PMLR (2020)
Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to learning 3D surface generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 216–224 (2018)
Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Medical Imaging 23(8), 949–958 (2004)
Gu, X., Yau, S.: Global conformal parameterization. In: Kobbelt, L., Schröder, P., Hoppe, H. (eds.) First Eurographics Symposium on Geometry Processing, vol. 43, pp. 127–137 (2003)
Guo, H., Liu, S., Pan, H., Liu, Y., Tong, X., Guo, B.: ComplexGen: CAD reconstruction by B-rep chain complex generation. ACM Trans. Graph. (TOG) 41(4), 1–18 (2022)
He, Y., Wang, H., Fu, C.W., Qin, H.: A divide-and-conquer approach for automatic polycube map construction. Comput. Graph. 33(3), 369–380 (2009)
Huang, Y.H., He, Y., Yuan, Y.J., Lai, Y.K., Gao, L.: StylizedNeRF: consistent 3D scene stylization as stylized nerf via 2D-3D mutual learning. In: Computer Vision and Pattern Recognition (CVPR) (2022)
Kreisselmeier, G., Steinhauser, R.: Systematic control design by optimizing a vector performance index. In: Computer Aided Design of Control Systems, pp. 113–117. Elsevier (1980)
Kuang, Z., Luan, F., Bi, S., Shu, Z., Wetzstein, G., Sunkavalli, K.: PaletteNeRF: alette-based appearance editing of neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20691–20700 (2023)
Li, M., Zhang, H.: D2IM-Net: learning detail disentangled implicit fields from single images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10246–10255 (2021)
Li, Z., et al.: Neuralangelo: high-fidelity neural surface reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8456–8465 (2023)
Li, Z., et al.: Physically-based editing of indoor scene lighting from a single image. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part VI, pp. 555–572. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-20068-7_32
Lin, C., Mitra, N., Wetzstein, G., Guibas, L.J., Guerrero, P.: NeuForm: adaptive overfitting for neural shape editing. Adv. Neural. Inf. Process. Syst. 35, 15217–15229 (2022)
Liu, S., Zhang, X., Zhang, Z., Zhang, R., Zhu, J.Y., Russell, B.: Editing conditional radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5773–5783 (2021)
Low, W.F., Lee, G.H.: Minimal Neural Atlas: parameterizing complex surfaces with minimal charts and distortion. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part II, pp. 465–481. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-20086-1_27
Ma, L., et al.: Neural parameterization for dynamic human head editing. ACM Trans. Graph. (TOG) 41(6), 1–15 (2022)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision nd Pattern Recognition, pp. 4460–4470 (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: ECCV (2020)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)
Niemeyer, M., Geiger, A.: GIRAFFE: representing scenes as compositional generative neural feature fields. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Oechsle, M., Peng, S., Geiger, A.: UNISURF: unifying neural implicit surfaces and radiance fields for multi-view reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5589–5599 (2021)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)
Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 577–582 (2023)
Praun, E., Hoppe, H.: Spherical parametrization and remeshing. ACM Trans. Graph. (TOG) 22(3), 340–349 (2003)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5648–5656 (2016)
Ramon, E., et al.: H3D-Net: few-shot high-fidelity 3D head reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5620–5629 (2021)
Rosu, R.A., Behnke, S.: PermutoSDF: fast multi-view reconstruction with implicit surfaces using permutohedral lattices. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8466–8475 (2023)
Sagnik Das, Ke Ma, Z.S., Samaras, D.: Learning an isometric surface parameterization for texture unwrapping. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) European Conference of Computer Vision 2022, ECCV 2022, Tel Aviv, Israel, October 23-27, 2022. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19836-6_33
Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFu: pixel-aligned implicit function for high-resolution clothed human digitization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2304–2314 (2019)
Sheffer, A., Praun, E., Rose, K., et al.: Mesh parameterization methods and their applications. Found. Trends® Comput. Graph. Vis. 2(2), 105–171 (2007)
Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.: NeRV: neural reflectance and visibility fields for relighting and view synthesis. In: CVPR (2021)
Sun, Q., Zhang, L., Zhang, M., Ying, X., Xin, S., Xia, J., He, Y.: Texture brush: an interactive surface texturing interface, pp. 153–160 (2013)
Tarini, M., Hormann, K., Cignoni, P., Montani, C.: Polycube-maps. ACM Trans. Graph. (TOG) 23(3), 853–860 (2004)
Tojo, K., Umetani, N.: Recolorable posterization of volumetric radiance fields using visibility-weighted palette extraction. In: Computer Graphics Forum, vol. 41, pp. 149–160. Wiley Online Library (2022)
Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2Mesh: generating 3d mesh models from single RGB images. In: Proceedings of the European conference on computer vision (ECCV), pp. 52–67 (2018)
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. NeurIPS (2021)
Wang, X., et al.: Seal-3D: interactive pixel-level editing for neural radiance fields (2023)
Wang, Y., Rahmann, L., Sorkine-Hornung, O.: Geometry-consistent neural shape representation with implicit displacement fields. In: The Tenth International Conference on Learning Representations. OpenReview (2022)
Wang, Y., Skorokhodov, I., Wonka, P.: HF-NeuS: improved surface reconstruction using high-frequency details. Adv. Neural. Inf. Process. Syst. 35, 1966–1978 (2022)
Williams, F., Schneider, T., Silva, C., Zorin, D., Bruna, J., Panozzo, D.: Deep geometric prior for surface reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10130–10139 (2019)
Wu, T., et al.: OmniObject3D: large-vocabulary 3D object dataset for realistic perception, reconstruction and generation (2023)
Xiang, F., Xu, Z., Hašan, M., Hold-Geoffroy, Y., Sunkavalli, K., Su, H.: NeuTex: neural texture mapping for volumetric neural rendering. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Xu, B., Zhang, J., Lin, K.Y., Qian, C., He, Y.: Deformable model driven neural rendering for high-fidelity 3D reconstruction of human heads under low-view settings. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023)
Yang, B., et al.: NeuMesh: learning disentangled neural mesh-based implicit field for geometry and texture editing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) European Conference on Computer Vision, pp. 597–614. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19787-1_34
Yang, B., et al.: Learning object-compositional neural radiance field for editable scene rendering. In: International Conference on Computer Vision (ICCV) (2021)
Yang, H., et al.: FaceScape: a large-scale high quality 3D face dataset and detailed riggable 3D face prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 601–610 (2020)
Yang, L., et al.: Neural parametric surfaces for shape modeling. arXiv preprint arXiv:2309.09911 (2023)
Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. Adv. Neural. Inf. Process. Syst. 34, 4805–4815 (2021)
Yariv, L., et al.: Multiview neural surface reconstruction by disentangling geometry and appearance. In: Advances in Neural Information Processing Systems, vol. 33 (2020)
Ye, W., et al.: IntrinsicNeRF: learning intrinsic neural radiance fields for editable novel view synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023)
Yenamandra, T., et al.: I3DMM: deep implicit 3D morphable model of human heads. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12803–12813 (2021)
Yuan, Y.J., et al.: Interactive nerf geometry editing with shape priors. IEEE Transactions on Pattern Analysis and Machine Intelligence (2023)
Zhang, Q., Hou, J., Qian, Y., Chan, A.B., Zhang, J., He, Y.: RegGeoNet: learning regular representations for large-scale 3D point clouds. Int. J. Comput. Vis. 130(12), 3100–3122 (2022)
Zhang, Q., Hou, J., Qian, Y., Zeng, Y., Zhang, J., He, Y.: Flattening-Net: deep regular 2D representation for 3D point cloud analysis. IEEE Trans. Pattern Anal. Mach. Intell. 45(8), 9726–9742 (2023)
Acknowledgment
This study is supported under the RIE2020 Industry Alignment Fund – Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s). This project is also partially supported by the Ministry of Education, Singapore, under its Academic Research Fund Grants (MOE-T2EP20220-0005 & RT19/22).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, B. et al. (2025). Parameterization-Driven Neural Surface Reconstruction for Object-Oriented Editing in Neural Rendering. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15099. Springer, Cham. https://doi.org/10.1007/978-3-031-72940-9_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-72940-9_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72939-3
Online ISBN: 978-3-031-72940-9
eBook Packages: Computer ScienceComputer Science (R0)