Abstract
This study explores the emerging area of continual panoptic segmentation, highlighting three key balances. First, we introduce past-class backtrace distillation to balance the stability of existing knowledge with the adaptability to new information. This technique retraces the features associated with past classes based on the final label assignment results, performing knowledge distillation targeting these specific features from the previous model while allowing other features to flexibly adapt to new information. Additionally, we introduce a class-proportional memory strategy, which aligns the class distribution in the replay sample set with that of the historical training data. This strategy maintains a balanced class representation during replay, enhancing the utility of the limited-capacity replay sample set in recalling prior classes. Moreover, recognizing that replay samples are annotated only for the classes of their original step, we devise balanced anti-misguidance losses, which combat the impact of incomplete annotations without incurring classification bias. Building upon these innovations, we present a new method named Balanced Continual Panoptic Segmentation (BalConpas). Our evaluation on the challenging ADE20K dataset demonstrates its superior performance compared to existing state-of-the-art methods. The official code is available at https://github.com/jinpeng0528/BalConpas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baek, D., Oh, Y., Lee, S., Lee, J., Ham, B.: Decomposed knowledge distillation for class-incremental semantic segmentation. In: NeurIPS (2022)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Cermelli, F., Cord, M., Douillard, A.: CoMFormer: continual learning in semantic and panoptic segmentation. In: CVPR (2023)
Cermelli, F., Mancini, M., Bulo, S.R., Ricci, E., Caputo, B.: Modeling the background for incremental learning in semantic segmentation. In: CVPR (2020)
Cha, S., Yoo, Y., Moon, T., et al.: SSUL: semantic segmentation with unknown label for exemplar-based class-incremental learning. In: NeurIPS (2021)
Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.S.: Riemannian walk for incremental learning: understanding forgetting and intransigence. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 556–572. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_33
Chen, J., Cong, R., Ip, H.H.S., Kwong, S.: Kepsalinst: using peripheral points to delineate salient instances. IEEE Trans. Cybern. 54(6), 3392–3405 (2024)
Chen, J., Cong, R., Yuxuan, L., Ip, H., Kwong, S.: Saving 100x storage: prototype replay for reconstructing training sample distribution in class-incremental semantic segmentation. In: NeurIPS (2023)
Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: CVPR (2022)
Cheng, B., Schwing, A., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. In: NeurIPS (2021)
Cong, R., Xiong, H., Chen, J., Zhang, W., Huang, Q., Zhao, Y.: Query-guided prototype evolution network for few-shot segmentation. IEEE Trans. Multimedia 26, 6501–6512 (2024)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)
Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without memorizing. In: CVPR (2019)
Douillard, A., Chen, Y., Dapogny, A., Cord, M.: PLOP: Learning without forgetting for continual semantic segmentation. In: CVPR (2021)
Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: PODNet: pooled outputs distillation for small-tasks incremental learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 86–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_6
Douillard, A., Ramé, A., Couairon, G., Cord, M.: DyTox: transformers for continual learning with dynamic token expansion. In: CVPR (2022)
Gu, Y., Deng, C., Wei, K.: Class-incremental instance segmentation via multi-teacher networks. In: AAAI (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Huang, Z., et al.: Learning prompt with distribution-based feature replay for few-shot class-incremental learning. arXiv preprint arXiv:2401.01598 (2024)
Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: CVPR (2019)
Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2018)
Mallya, A., Davis, D., Lazebnik, S.: Piggyback: adapting a single network to multiple tasks by learning to mask weights. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 72–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_5
Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by iterative pruning. In: CVPR (2018)
Maracani, A., Michieli, U., Toldo, M., Zanuttigh, P.: RECALL: Replay-based continual learning in semantic segmentation. In: ICCV (2021)
Michieli, U., Zanuttigh, P.: Incremental learning techniques for semantic segmentation. In: ICCVW (2019)
Michieli, U., Zanuttigh, P.: Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations. In: CVPR (2021)
Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P., Nabi, M.: Learning to remember: a synaptic plasticity driven framework for continual learning. In: CVPR (2019)
Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: CVPR (2017)
Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: NeurIPS (2017)
Xiao, J.W., Zhang, C.B., Feng, J., Liu, X., van de Weijer, J., Cheng, M.M.: Endpoints weight fusion for class incremental semantic segmentation. In: CVPR (2023)
Yan, S., Xie, J., He, X.: DER: dynamically expandable representation for class incremental learning. In: CVPR (2021)
Yang, G., et al.: Uncertainty-aware contrastive distillation for incremental semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 2567–2581 (2023)
Zhang, C.B., Xiao, J.W., Liu, X., Chen, Y.C., Cheng, M.M.: Representation compensation networks for continual semantic segmentation. In: CVPR (2022)
Zhang, Z., Gao, G., Fang, Z., Jiao, J., Wei, Y.: Mining unseen classes via regional objectness: a simple baseline for incremental segmentation. In: NeurIPS (2022)
Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: CVPR (2017)
Acknowledgements
This work was supported in part by the National Science and Technology Major Project under Grant 2021ZD0112100, in part by the Taishan Scholar Project of Shandong Province under Grant tsqn202306079, and in part by Xiaomi Young Talents Program.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, J., Cong, R., Luo, Y., Ip, H.H.S., Kwong, S. (2025). Strike a Balance in Continual Panoptic Segmentation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15099. Springer, Cham. https://doi.org/10.1007/978-3-031-72940-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-72940-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72939-3
Online ISBN: 978-3-031-72940-9
eBook Packages: Computer ScienceComputer Science (R0)