Skip to main content

Strike a Balance in Continual Panoptic Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

This study explores the emerging area of continual panoptic segmentation, highlighting three key balances. First, we introduce past-class backtrace distillation to balance the stability of existing knowledge with the adaptability to new information. This technique retraces the features associated with past classes based on the final label assignment results, performing knowledge distillation targeting these specific features from the previous model while allowing other features to flexibly adapt to new information. Additionally, we introduce a class-proportional memory strategy, which aligns the class distribution in the replay sample set with that of the historical training data. This strategy maintains a balanced class representation during replay, enhancing the utility of the limited-capacity replay sample set in recalling prior classes. Moreover, recognizing that replay samples are annotated only for the classes of their original step, we devise balanced anti-misguidance losses, which combat the impact of incomplete annotations without incurring classification bias. Building upon these innovations, we present a new method named Balanced Continual Panoptic Segmentation (BalConpas). Our evaluation on the challenging ADE20K dataset demonstrates its superior performance compared to existing state-of-the-art methods. The official code is available at https://github.com/jinpeng0528/BalConpas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baek, D., Oh, Y., Lee, S., Lee, J., Ham, B.: Decomposed knowledge distillation for class-incremental semantic segmentation. In: NeurIPS (2022)

    Google Scholar 

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Cermelli, F., Cord, M., Douillard, A.: CoMFormer: continual learning in semantic and panoptic segmentation. In: CVPR (2023)

    Google Scholar 

  4. Cermelli, F., Mancini, M., Bulo, S.R., Ricci, E., Caputo, B.: Modeling the background for incremental learning in semantic segmentation. In: CVPR (2020)

    Google Scholar 

  5. Cha, S., Yoo, Y., Moon, T., et al.: SSUL: semantic segmentation with unknown label for exemplar-based class-incremental learning. In: NeurIPS (2021)

    Google Scholar 

  6. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.S.: Riemannian walk for incremental learning: understanding forgetting and intransigence. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 556–572. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_33

    Chapter  Google Scholar 

  7. Chen, J., Cong, R., Ip, H.H.S., Kwong, S.: Kepsalinst: using peripheral points to delineate salient instances. IEEE Trans. Cybern. 54(6), 3392–3405 (2024)

    Article  Google Scholar 

  8. Chen, J., Cong, R., Yuxuan, L., Ip, H., Kwong, S.: Saving 100x storage: prototype replay for reconstructing training sample distribution in class-incremental semantic segmentation. In: NeurIPS (2023)

    Google Scholar 

  9. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: CVPR (2022)

    Google Scholar 

  10. Cheng, B., Schwing, A., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. In: NeurIPS (2021)

    Google Scholar 

  11. Cong, R., Xiong, H., Chen, J., Zhang, W., Huang, Q., Zhao, Y.: Query-guided prototype evolution network for few-shot segmentation. IEEE Trans. Multimedia 26, 6501–6512 (2024)

    Article  Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  13. Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without memorizing. In: CVPR (2019)

    Google Scholar 

  14. Douillard, A., Chen, Y., Dapogny, A., Cord, M.: PLOP: Learning without forgetting for continual semantic segmentation. In: CVPR (2021)

    Google Scholar 

  15. Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: PODNet: pooled outputs distillation for small-tasks incremental learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 86–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_6

    Chapter  Google Scholar 

  16. Douillard, A., Ramé, A., Couairon, G., Cord, M.: DyTox: transformers for continual learning with dynamic token expansion. In: CVPR (2022)

    Google Scholar 

  17. Gu, Y., Deng, C., Wei, K.: Class-incremental instance segmentation via multi-teacher networks. In: AAAI (2021)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  19. Huang, Z., et al.: Learning prompt with distribution-based feature replay for few-shot class-incremental learning. arXiv preprint arXiv:2401.01598 (2024)

  20. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: CVPR (2019)

    Google Scholar 

  21. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  22. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  23. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2018)

    Google Scholar 

  24. Mallya, A., Davis, D., Lazebnik, S.: Piggyback: adapting a single network to multiple tasks by learning to mask weights. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 72–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_5

    Chapter  Google Scholar 

  25. Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by iterative pruning. In: CVPR (2018)

    Google Scholar 

  26. Maracani, A., Michieli, U., Toldo, M., Zanuttigh, P.: RECALL: Replay-based continual learning in semantic segmentation. In: ICCV (2021)

    Google Scholar 

  27. Michieli, U., Zanuttigh, P.: Incremental learning techniques for semantic segmentation. In: ICCVW (2019)

    Google Scholar 

  28. Michieli, U., Zanuttigh, P.: Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations. In: CVPR (2021)

    Google Scholar 

  29. Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P., Nabi, M.: Learning to remember: a synaptic plasticity driven framework for continual learning. In: CVPR (2019)

    Google Scholar 

  30. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: CVPR (2017)

    Google Scholar 

  31. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: NeurIPS (2017)

    Google Scholar 

  32. Xiao, J.W., Zhang, C.B., Feng, J., Liu, X., van de Weijer, J., Cheng, M.M.: Endpoints weight fusion for class incremental semantic segmentation. In: CVPR (2023)

    Google Scholar 

  33. Yan, S., Xie, J., He, X.: DER: dynamically expandable representation for class incremental learning. In: CVPR (2021)

    Google Scholar 

  34. Yang, G., et al.: Uncertainty-aware contrastive distillation for incremental semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 2567–2581 (2023)

    Google Scholar 

  35. Zhang, C.B., Xiao, J.W., Liu, X., Chen, Y.C., Cheng, M.M.: Representation compensation networks for continual semantic segmentation. In: CVPR (2022)

    Google Scholar 

  36. Zhang, Z., Gao, G., Fang, Z., Jiao, J., Wei, Y.: Mining unseen classes via regional objectness: a simple baseline for incremental segmentation. In: NeurIPS (2022)

    Google Scholar 

  37. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: CVPR (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science and Technology Major Project under Grant 2021ZD0112100, in part by the Taishan Scholar Project of Shandong Province under Grant tsqn202306079, and in part by Xiaomi Young Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Runmin Cong or Sam Kwong .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 15451 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Cong, R., Luo, Y., Ip, H.H.S., Kwong, S. (2025). Strike a Balance in Continual Panoptic Segmentation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15099. Springer, Cham. https://doi.org/10.1007/978-3-031-72940-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72940-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72939-3

  • Online ISBN: 978-3-031-72940-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics