Skip to main content

Knowledge Transfer with Simulated Inter-image Erasing for Weakly Supervised Semantic Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Though adversarial erasing has prevailed in weakly supervised semantic segmentation to help activate integral object regions, existing approaches still suffer from the dilemma of under-activation and over-expansion due to the difficulty in determining when to stop erasing. In this paper, we propose a Knowledge Transfer with Simulated Inter-Image Erasing (KTSE) approach for weakly supervised semantic segmentation to alleviate the above problem. In contrast to existing erasing-based methods that remove the discriminative part for more object discovery, we propose a simulated inter-image erasing scenario to weaken the original activation by introducing extra object information. Then, object knowledge is transferred from the anchor image to the consequent less activated localization map to strengthen network localization ability. Considering the adopted bidirectional alignment will also weaken the anchor image activation if appropriate constraints are missing, we propose a self-supervised regularization module to maintain the reliable activation in discriminative regions and improve the inter-class object boundary recognition for complex images with multiple categories of objects. In addition, we resort to intra-image erasing and propose a multi-granularity alignment module to gently enlarge the object activation to boost the object knowledge transfer. Extensive experiments and ablation studies on PASCAL VOC 2012 and COCO datasets demonstrate the superiority of our proposed approach. Codes and models are available at https://nust-machine-intelligence-laboratory.github.io/project-KTSE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, J., Cho, S., Kwak, S.: Weakly supervised learning of instance segmentation with inter-pixel relations. In: CVPR, pp. 2209–2218 (2019)

    Google Scholar 

  2. Ahn, J., Kwak, S.: Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In: CVPR, pp. 4981–4990 (2018)

    Google Scholar 

  3. Bearman, A., Russakovsky, O., Ferrari, V., Fei-Fei, L.: What’s the point: semantic segmentation with point supervision. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_34

    Chapter  Google Scholar 

  4. Cai, X., Lai, Q., Wang, Y., Wang, W., Sun, Z., Yao, Y.: Poly kernel inception network for remote sensing detection. In: CVPR, pp. 27706–27716 (2024)

    Google Scholar 

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE TPAMI 40, 834–848 (2017)

    Article  Google Scholar 

  6. Chen, L., Lei, C., Li, R., Li, S., Zhang, Z., Zhang, L.: FPR: false positive rectification for weakly supervised semantic segmentation. In: ICCV, pp. 1108–1118 (2023)

    Google Scholar 

  7. Chen, L., Wu, W., Fu, C., Han, X., Zhang, Y.: Weakly supervised semantic segmentation with boundary exploration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 347–362. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_21

    Chapter  Google Scholar 

  8. Chen, Q., Yang, L., Lai, J.H., Xie, X.: Self-supervised image-specific prototype exploration for weakly supervised semantic segmentation. In: CVPR, pp. 4288–4298 (2022)

    Google Scholar 

  9. Chen, T., et al.: Semantically meaningful class prototype learning for one-shot image segmentation. IEEE TMM 24, 968–980 (2021)

    Google Scholar 

  10. Chen, T., Yao, Y., Huang, X., Li, Z., Nie, L., Tang, J.: Spatial structure constraints for weakly supervised semantic segmentation. IEEE TIP 33, 1136–1148 (2024)

    Google Scholar 

  11. Chen, T., Yao, Y., Tang, J.: Multi-granularity denoising and bidirectional alignment for weakly supervised semantic segmentation. IEEE TIP 32, 2960–2971 (2023)

    Google Scholar 

  12. Chen, T., Yao, Y., Zhang, L., Wang, Q., Xie, G.S., Shen, F.: Saliency guided inter-and intra-class relation constraints for weakly supervised semantic segmentation. IEEE TMM 25, 1727–1737 (2022)

    Google Scholar 

  13. Chen, Z., Sun, Q.: Extracting class activation maps from non-discriminative features as well. In: CVPR, pp. 3135–3144 (2023)

    Google Scholar 

  14. Chen, Z., Wang, T., Wu, X., Hua, X.S., Zhang, H., Sun, Q.: Class re-activation maps for weakly-supervised semantic segmentation. In: CVPR, pp. 969–978 (2022)

    Google Scholar 

  15. Cheng, Z., et al.: Out-of-candidate rectification for weakly supervised semantic segmentation. In: CVPR, pp. 23673–23684 (2023)

    Google Scholar 

  16. Dai, J., He, K., Sun, J.: BoxSup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV, pp. 1635–1643 (2015)

    Google Scholar 

  17. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  18. Du, Y., Fu, Z., Liu, Q., Wang, Y.: Weakly supervised semantic segmentation by pixel-to-prototype contrast. In: CVPR, pp. 4320–4329 (2022)

    Google Scholar 

  19. Everingham, M., Gool, L.V., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88, 303–338 (2010)

    Article  Google Scholar 

  20. Fan, J., Zhang, Z., Song, C., Tan, T.: Learning integral objects with intra-class discriminator for weakly-supervised semantic segmentation. In: CVPR, pp. 4283–4292 (2020)

    Google Scholar 

  21. Fan, J., Zhang, Z., Tan, T., Song, C., Xiao, J.: CIAN: cross-image affinity net for weakly supervised semantic segmentation. In: AAAI, vol. 34, pp. 10762–10769 (2020)

    Google Scholar 

  22. Hariharan, B., Arbeláez, P., Bourdev, L.D., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: ICCV, pp. 991–998 (2011)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  24. Jiang, P.T., Yang, Y., Hou, Q., Wei, Y.: L2G: a simple local-to-global knowledge transfer framework for weakly supervised semantic segmentation. In: CVPR, pp. 16886–16896 (2022)

    Google Scholar 

  25. Jing, L., Chen, Y., Tian, Y.: Coarse-to-fine semantic segmentation from image-level labels. IEEE TIP 29, 225–236 (2019)

    MathSciNet  Google Scholar 

  26. Jo, S., Yu, I.J., Kim, K.: MARS: model-agnostic biased object removal without additional supervision for weakly-supervised semantic segmentation. arXiv preprint arXiv:2304.09913 (2023)

  27. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly supervised instance and semantic segmentation. In: CVPR, pp. 876–885 (2017)

    Google Scholar 

  28. Kim, B., Han, S., Kim, J.: Discriminative region suppression for weakly-supervised semantic segmentation. In: AAAI, vol. 35, pp. 1754–1761 (2021)

    Google Scholar 

  29. Kolesnikov, A., Lampert, C.H.: Seed, expand and constrain: three principles for weakly-supervised image segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 695–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_42

    Chapter  Google Scholar 

  30. Kweon, H., Yoon, S.H., Kim, H., Park, D., Yoon, K.J.: Unlocking the potential of ordinary classifier: class-specific adversarial erasing framework for weakly supervised semantic segmentation. In: ICCV, pp. 6994–7003 (2021)

    Google Scholar 

  31. Lee, J., Choi, J., Mok, J., Yoon, S.: Reducing information bottleneck for weakly supervised semantic segmentation. In: NeurIPS, vol. 34, pp. 27408–27421 (2021)

    Google Scholar 

  32. Lee, J., Kim, E., Yoon, S.: Anti-adversarially manipulated attributions for weakly and semi-supervised semantic segmentation. In: CVPR, pp. 4071–4080 (2021)

    Google Scholar 

  33. Lee, J., Oh, S.J., Yun, S., Choe, J., Kim, E., Yoon, S.: Weakly supervised semantic segmentation using out-of-distribution data. In: CVPR, pp. 16897–16906 (2022)

    Google Scholar 

  34. Lee, S., Lee, M., Lee, J., Shim, H.: Railroad is not a train: saliency as pseudo-pixel supervision for weakly supervised semantic segmentation. In: CVPR, pp. 5495–5505 (2021)

    Google Scholar 

  35. Li, J., Jie, Z., Wang, X., Wei, X., Ma, L.: Expansion and shrinkage of localization for weakly-supervised semantic segmentation, vol. 35, pp. 16037–16051 (2022)

    Google Scholar 

  36. Li, X., Zhou, T., Li, J., Zhou, Y., Zhang, Z.: Group-wise semantic mining for weakly supervised semantic segmentation. In: AAAI, pp. 1984–1992 (2021)

    Google Scholar 

  37. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: ScribbleSup: scribble-supervised convolutional networks for semantic segmentation. In: CVPR, pp. 3159–3167 (2016)

    Google Scholar 

  38. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  39. Lin, Y., et al.: CLIP is also an efficient segmenter: a text-driven approach for weakly supervised semantic segmentation. In: CVPR, pp. 15305–15314 (2023)

    Google Scholar 

  40. Liu, W., Zhang, C., Lin, G., Hung, T.Y., Miao, C.: Weakly supervised segmentation with maximum bipartite graph matching. In: ACM MM, pp. 2085–2094 (2020)

    Google Scholar 

  41. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  42. Pei, G., Chen, T., Jiang, X., Liu, H., Sun, Z., Yao, Y.: VideoMAC: video masked autoencoders meet convnets. In: CVPR, pp. 22733–22743 (2024)

    Google Scholar 

  43. Peng, Z., Wang, G., Xie, L., Jiang, D., Shen, W., Tian, Q.: USAGE: a unified seed area generation paradigm for weakly supervised semantic segmentation. arXiv preprint arXiv:2303.07806 (2023)

  44. Qin, J., Wu, J., Xiao, X., Li, L., Wang, X.: Activation modulation and recalibration scheme for weakly supervised semantic segmentation. In: AAAI, vol. 36, pp. 2117–2125 (2022)

    Google Scholar 

  45. Rong, S., Tu, B., Wang, Z., Li, J.: Boundary-enhanced co-training for weakly supervised semantic segmentation. In: CVPR, pp. 19574–19584 (2023)

    Google Scholar 

  46. Rossetti, S., Zappia, D., Sanzari, M., Schaerf, M., Pirri, F.: Max pooling with vision transformers reconciles class and shape in weakly supervised semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13690, pp. 446–463. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20056-4_26

    Chapter  Google Scholar 

  47. Ru, L., Zhan, Y., Yu, B., Du, B.: Learning affinity from attention: end-to-end weakly-supervised semantic segmentation with transformers. In: CVPR, pp. 16846–16855 (2022)

    Google Scholar 

  48. Ru, L., Zheng, H., Zhan, Y., Du, B.: Token contrast for weakly-supervised semantic segmentation. In: CVPR, pp. 3093–3102 (2023)

    Google Scholar 

  49. Saleh, F., Aliakbarian, M.S., Salzmann, M., Petersson, L., Gould, S., Alvarez, J.M.: Built-in foreground/background prior for weakly-supervised semantic segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 413–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_25

    Chapter  Google Scholar 

  50. Sheng, M., Sun, Z., Cai, Z., Chen, T., Zhou, Y., Yao, Y.: Adaptive integration of partial label learning and negative learning for enhanced noisy label learning. In: AAAI, vol. 38, pp. 4820–4828 (2024)

    Google Scholar 

  51. Shimoda, W., Yanai, K.: Self-supervised difference detection for weakly-supervised semantic segmentation. In: ICCV, pp. 5208–5217 (2019)

    Google Scholar 

  52. Singh, K.K., Yu, H., Sarmasi, A., Pradeep, G., Lee, Y.J.: Hide-and-seek: a data augmentation technique for weakly-supervised localization and beyond. arXiv preprint arXiv:1811.02545 (2018)

  53. Song, C., Huang, Y., Ouyang, W., Wang, L.: Box-driven class-wise region masking and filling rate guided loss for weakly supervised semantic segmentation. In: CVPR, pp. 3136–3145 (2019)

    Google Scholar 

  54. Su, Y., Sun, R., Lin, G., Wu, Q.: Context decoupling augmentation for weakly supervised semantic segmentation. In: ICCV (2021)

    Google Scholar 

  55. Sun, K., Shi, H., Zhang, Z., Huang, Y.: ECS-Net: improving weakly supervised semantic segmentation by using connections between class activation maps. In: ICCV, pp. 7283–7292 (2021)

    Google Scholar 

  56. Vernaza, P., Chandraker, M.: Learning random-walk label propagation for weakly-supervised semantic segmentation. In: CVPR, pp. 7158–7166 (2017)

    Google Scholar 

  57. Wang, W., Sun, G., Van Gool, L.: Looking beyond single images for weakly supervised semantic segmentation learning. IEEE TPAMI 46(3), 1635–1649 (2022)

    Article  Google Scholar 

  58. Wang, X., Liu, S., Ma, H., Yang, M.H.: Weakly-supervised semantic segmentation by iterative affinity learning. Int. J. Comput. Vis. 128, 1736–1749 (2020)

    Article  MathSciNet  Google Scholar 

  59. Wang, Y., Zhang, J., Kan, M., Shan, S., Chen, X.: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In: CVPR, pp. 12275–12284 (2020)

    Google Scholar 

  60. Wei, Y., Feng, J., Liang, X., Cheng, M.M., Zhao, Y., Yan, S.: Object region mining with adversarial erasing: a simple classification to semantic segmentation approach. In: CVPR, pp. 1568–1576 (2017)

    Google Scholar 

  61. Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., Huang, T.: Revisiting dilated convolution: a simple approach for weakly-and semi-supervised semantic segmentation. In: CVPR, pp. 7268–7277 (2018)

    Google Scholar 

  62. Wu, Z., Shen, C., Van Den Hengel, A.: Wider or deeper: revisiting the ResNet model for visual recognition. PR 90, 119–133 (2019)

    Google Scholar 

  63. Xie, J., Hou, X., Ye, K., Shen, L.: CLIMS: cross language image matching for weakly supervised semantic segmentation. In: CVPR, pp. 4483–4492 (2022)

    Google Scholar 

  64. Xu, L., Ouyang, W., Bennamoun, M., Boussaid, F., Sohel, F., Xu, D.: Leveraging auxiliary tasks with affinity learning for weakly supervised semantic segmentation. In: ICCV, pp. 6984–6993 (2021)

    Google Scholar 

  65. Xu, L., Ouyang, W., Bennamoun, M., Boussaid, F., Xu, D.: Multi-class token transformer for weakly supervised semantic segmentation. In: CVPR, pp. 4310–4319 (2022)

    Google Scholar 

  66. Yao, Y., et al.: Non-salient region object mining for weakly supervised semantic segmentation. In: CVPR, pp. 2623–2632 (2021)

    Google Scholar 

  67. Yoon, S.H., Kweon, H., Cho, J., Kim, S., Yoon, K.J.: Adversarial erasing framework via triplet with gated pyramid pooling layer for weakly supervised semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13689, pp. 326–344. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_19

    Chapter  Google Scholar 

  68. Zhang, D., Zhang, H., Tang, J., Hua, X.S., Sun, Q.: Causal intervention for weakly-supervised semantic segmentation. In: NeurIPS, vol. 33 (2020)

    Google Scholar 

  69. Zhang, X., Wei, Y., Feng, J., Yang, Y., Huang, T.S.: Adversarial complementary learning for weakly supervised object localization. In: CVPR, pp. 1325–1334 (2018)

    Google Scholar 

  70. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: AAAI, vol. 34, pp. 13001–13008 (2020)

    Google Scholar 

  71. Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016)

    Google Scholar 

  72. Zhou, T., Li, L., Li, X., Feng, C.M., Li, J., Shao, L.: Group-wise learning for weakly supervised semantic segmentation. IEEE TIP 31, 799–811 (2021)

    Google Scholar 

  73. Zhou, T., Zhang, M., Zhao, F., Li, J.: Regional semantic contrast and aggregation for weakly supervised semantic segmentation. In: CVPR, pp. 4299–4309 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62202227 and 62102182), Natural Science Foundation of Jiangsu Province (No. BK20220938 and BK20220934), China Postdoctoral Science Foundation (No. 2022M711635), Jiangsu Funding Program for Excellent Postdoctoral Talent (No. 2022ZB267), Fundamental Research Funds for the Central Universities (No. 30923010303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazhou Yao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2106 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, T., Jiang, X., Pei, G., Sun, Z., Wang, Y., Yao, Y. (2025). Knowledge Transfer with Simulated Inter-image Erasing for Weakly Supervised Semantic Segmentation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15100. Springer, Cham. https://doi.org/10.1007/978-3-031-72946-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72946-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72945-4

  • Online ISBN: 978-3-031-72946-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics