Skip to main content

WiMANS: A Benchmark Dataset for WiFi-Based Multi-user Activity Sensing

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15100))

Included in the following conference series:

Abstract

WiFi-based human sensing has exhibited remarkable potential to analyze user behaviors in a non-intrusive and device-free manner, benefiting applications as diverse as smart homes and healthcare. However, most previous works focus on single-user sensing, which has limited practicability in scenarios involving multiple users. Although recent studies have begun to investigate WiFi-based multi-user sensing, there remains a lack of benchmark datasets to facilitate reproducible and comparable research. To bridge this gap, we present WiMANS, to our knowledge, the first dataset for multi-user sensing based on WiFi. WiMANS contains over 9.4 h of dual-band WiFi Channel State Information (CSI), as well as synchronized videos, monitoring the simultaneous activities of multiple users. We exploit WiMANS to benchmark the performance of state-of-the-art WiFi-based human sensing models and video-based models, posing new challenges and opportunities for future work. We believe WiMANS can push the boundaries of current studies and catalyze the research on WiFi-based multi-user sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahadori, N., Ashdown, J., Restuccia, F.: Rewis: Reliable wi-fi sensing through few-shot multi-antenna multi-receiver CSI learning. In: 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 50–59. IEEE (2022)

    Google Scholar 

  2. Baha’A, A., Almazari, M.M., Alazrai, R., Daoud, M.I.: A dataset for wi-fi-based human activity recognition in line-of-sight and non-line-of-sight indoor environments. Data Brief 33, 106534 (2020)

    Article  Google Scholar 

  3. Bocus, M.J., et al.: Operanet, a multimodal activity recognition dataset acquired from radio frequency and vision-based sensors. Sci. Data 9(1), 474 (2022)

    Article  Google Scholar 

  4. Brinke, J.K., Meratnia, N.: Dataset: channel state information for different activities, participants and days. In: Proceedings of the 2nd Workshop on Data Acquisition to Analysis, pp. 61–64 (2019)

    Google Scholar 

  5. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, July 2017

    Google Scholar 

  6. Chen, C., Zhou, G., Lin, Y.: Cross-domain wifi sensing with channel state information: a survey. ACM Comput. Surv. 55(11), 1–37 (2023)

    Article  Google Scholar 

  7. Chen, Z., Zhang, L., Jiang, C., Cao, Z., Cui, W.: WiFi CSI based passive human activity recognition using attention based BLSTM. IEEE Trans. Mob. Comput. 18(11), 2714–2724 (2018)

    Article  Google Scholar 

  8. Ding, J., Wang, Y., Fu, X.: Wihi: wifi based human identity identification using deep learning. IEEE Access 8, 129246–129262 (2020)

    Article  Google Scholar 

  9. Ding, J., Wang, Y., Si, H., Gao, S., Xing, J.: Three-dimensional indoor localization and tracking for mobile target based on WiFi sensing. IEEE Internet Things J. 9(21), 21687–21701 (2022)

    Article  Google Scholar 

  10. Ding, J., et al.: Multimodal fusion-GMM based gesture recognition for smart home by wifi sensing. In: 2022 IEEE 95th Vehicular Technology Conference, pp. 1–6. IEEE (2022)

    Google Scholar 

  11. Ding, S., Chen, Z., Zheng, T., Luo, J.: RF-Net: a unified meta-learning framework for rf-enabled one-shot human activity recognition. In: Proceedings of the 18th Conference on Embedded Networked Sensor Systems, pp. 517–530 (2020)

    Google Scholar 

  12. Duan, P., Li, C., Li, J., Chen, X., Wang, C., Wang, E.: Wisdom: wi-fi based contactless multi-user activity recognition. IEEE Internet Things J. (2022)

    Google Scholar 

  13. Fan, H., et al.: Multiscale vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6824–6835 (2021)

    Google Scholar 

  14. Fard Moshiri, P., Shahbazian, R., Nabati, M., Ghorashi, S.A.: A CSI-based human activity recognition using deep learning. Sensors 21(21), 7225 (2021)

    Article  Google Scholar 

  15. Gao, Q., Wang, J., Ma, X., Feng, X., Wang, H.: CSI-based device-free wireless localization and activity recognition using radio image features. IEEE Trans. Veh. Technol. 66(11), 10346–10356 (2017)

    Article  Google Scholar 

  16. Ge, Y., et al.: Contactless wifi sensing and monitoring for future healthcare-emerging trends, challenges, and opportunities. IEEE Rev. Biomed. Eng. 16, 171–191 (2022)

    Article  Google Scholar 

  17. Geng, J., Huang, D., De la Torre, F.: Densepose from wifi. arXiv preprint arXiv:2301.00250 (2022)

  18. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  19. Gringoli, F., Cominelli, M., Blanco, A., Widmer, J.: AX-CSI: enabling CSI extraction on commercial 802.11 ax Wi-Fi platforms. In: Proceedings of the 15th ACM Workshop on Wireless Network Testbeds, Experimental evaluation & CHaracterization, pp. 46–53 (2022)

    Google Scholar 

  20. Gu, Y., et al.: WiGRUNT: wifi-enabled gesture recognition using dual-attention network. IEEE Trans. Hum.-Mach. Syst. 52(4), 736–746 (2022)

    Google Scholar 

  21. Guo, L., et al.: WiAR: a public dataset for wifi-based activity recognition. IEEE Access 7, 154935–154945 (2019)

    Article  Google Scholar 

  22. Guo, L., et al.: Towards CSI-based diversity activity recognition via LSTM-CNN encoder-decoder neural network. Neurocomputing 444, 260–273 (2021)

    Article  Google Scholar 

  23. Halperin, D., Hu, W., Sheth, A., Wetherall, D.: Tool release: gathering 802.11 n traces with channel state information. ACM SIGCOMM Comput. Commun. Rev. 41(1), 53 (2011)

    Google Scholar 

  24. He, J., Yang, W.: IMAR: multi-user continuous action recognition with wifi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6(3), 1–27 (2022)

    Google Scholar 

  25. Hernandez, S.M., Bulut, E.: Wifi sensing on the edge: signal processing techniques and challenges for real-world systems. IEEE Commun. Surv, Tutor (2022)

    Google Scholar 

  26. Hu, P., Tang, C., Yin, K., Zhang, X.: WiGR: a practical wi-fi-based gesture recognition system with a lightweight few-shot network. Appl. Sci. 11(8), 3329 (2021)

    Article  Google Scholar 

  27. Huang, Q., Chen, H., Zhang, Q.: Joint design of sensing and communication systems for smart homes. IEEE Netw. 34(6), 191–197 (2020)

    Article  Google Scholar 

  28. Hussain, Z., Sheng, Q.Z., Zhang, W.E.: A review and categorization of techniques on device-free human activity recognition. J. Netw. Comput. Appl. 167, 102738 (2020)

    Article  Google Scholar 

  29. Jiang, W., et al.: Towards 3D human pose construction using wifi. In: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, pp. 1–14 (2020)

    Google Scholar 

  30. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  31. Kong, H., et al.: Multiauth: enable multi-user authentication with single commodity wifi device. In: Proceedings of the Twenty-second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, pp. 31–40 (2021)

    Google Scholar 

  32. Kong, H., et al.: Push the limit of wifi-based user authentication towards undefined gestures. In: IEEE INFOCOM 2022-IEEE Conference on Computer Communications, pp. 410–419. IEEE (2022)

    Google Scholar 

  33. Li, B., Cui, W., Wang, W., Zhang, L., Chen, Z., Wu, M.: Two-stream convolution augmented transformer for human activity recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 286–293 (2021)

    Google Scholar 

  34. Li, T., Fan, L., Zhao, M., Liu, Y., Katabi, D.: Making the invisible visible: action recognition through walls and occlusions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 872–881 (2019)

    Google Scholar 

  35. Li, Y., et al.: MVITV2: improved multiscale vision transformers for classification and detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4804–4814 (2022)

    Google Scholar 

  36. Lin, Y., Gao, Y., Li, B., Dong, W.: Revisiting indoor intrusion detection with wifi signals: do not panic over a pet! IEEE Internet Things J. 7(10), 10437–10449 (2020)

    Article  Google Scholar 

  37. Liu, Z., et al.: Video swin transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3202–3211 (2022)

    Google Scholar 

  38. Ma, Y., Zhou, G., Wang, S., Zhao, H., Jung, W.: Signfi: sign language recognition using wifi. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(1), 1–21 (2018)

    Google Scholar 

  39. Meneghello, F., Chen, C., Cordeiro, C., Restuccia, F.: Toward integrated sensing and communications in IEEE 802.11 bf wi-fi networks. IEEE Commun. Mag. 61(7), 128–133 (2023)

    Google Scholar 

  40. Mo, H., Kim, S.: A deep learning-based human identification system with wi-fi CSI data augmentation. IEEE Access 9, 91913–91920 (2021)

    Article  Google Scholar 

  41. Moshiri, P.F., Nabati, M., Shahbazian, R., Ghorashi, S.A.: CSI-based human activity recognition using convolutional neural networks. In: 2021 11th International Conference on Computer Engineering and Knowledge, pp. 7–12. IEEE (2021)

    Google Scholar 

  42. Nirmal, I., Khamis, A., Hassan, M., Hu, W., Zhu, X.: Deep learning for radio-based human sensing: recent advances and future directions. IEEE Commun. Surv. Tutor. 23(2), 995–1019 (2021)

    Article  Google Scholar 

  43. Palipana, S., Rojas, D., Agrawal, P., Pesch, D.: FallDeFi: ubiquitous fall detection using commodity wi-fi devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1(4), 1–25 (2018)

    Google Scholar 

  44. Qian, K., Wu, C., Yang, Z., Liu, Y., Jamieson, K.: Widar: decimeter-level passive tracking via velocity monitoring with commodity wi-fi. In: Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 1–10 (2017)

    Google Scholar 

  45. Qian, K., Wu, C., Zhang, Y., Zhang, G., Yang, Z., Liu, Y.: Widar2.0: passive human tracking with a single wi-fi link. In: Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, pp. 350–361 (2018)

    Google Scholar 

  46. Ren, Y., Wang, Z., Wang, Y., Tan, S., Chen, Y., Yang, J.: Gopose: 3D human pose estimation using wifi. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6(2), 1–25 (2022)

    Google Scholar 

  47. Shalaby, E., ElShennawy, N., Sarhan, A.: Utilizing deep learning models in CSI-based human activity recognition. Neural Comput. Appl. 1–18 (2022)

    Google Scholar 

  48. Tan, S., Ren, Y., Yang, J., Chen, Y.: Commodity wifi sensing in ten years: status, challenges, and opportunities. IEEE Internet Things J. 9(18), 17832–17843 (2022)

    Article  Google Scholar 

  49. Tan, S., Zhang, L., Wang, Z., Yang, J.: Multitrack: multi-user tracking and activity recognition using commodity wifi. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2019)

    Google Scholar 

  50. Tian, Z., Li, Y., Zhou, M., Li, Z.: Wifi-based adaptive indoor passive intrusion detection. In: 2018 IEEE 23rd International Conference on Digital Signal Processing, pp. 1–5. IEEE (2018)

    Google Scholar 

  51. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  52. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  53. Venkatnarayan, R.H., Page, G., Shahzad, M.: Multi-user gesture recognition using wifi. In: Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, pp. 401–413 (2018)

    Google Scholar 

  54. Wang, D., Yang, J., Cui, W., Xie, L., Sun, S.: Multimodal CSI-based human activity recognition using GANs. IEEE Internet Things J. 8(24), 17345–17355 (2021)

    Article  Google Scholar 

  55. Wang, D., Yang, J., Cui, W., Xie, L., Sun, S.: Caution: a robust wifi-based human authentication system via few-shot open-set recognition. IEEE Internet Things J. 9(18), 17323–17333 (2022)

    Article  Google Scholar 

  56. Wang, F., Feng, J., Zhao, Y., Zhang, X., Zhang, S., Han, J.: Joint activity recognition and indoor localization with wifi fingerprints. IEEE Access 7, 80058–80068 (2019)

    Article  Google Scholar 

  57. Wang, F., Zhou, S., Panev, S., Han, J., Huang, D.: Person-in-wifi: fine-grained person perception using wifi. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5452–5461 (2019)

    Google Scholar 

  58. Wang, W., Liu, A.X., Shahzad, M., Ling, K., Lu, S.: Understanding and modeling of wifi signal based human activity recognition. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pp. 65–76 (2015)

    Google Scholar 

  59. Wei, B., Hu, W., Yang, M., Chou, C.T.: Radio-based device-free activity recognition with radio frequency interference. In: Proceedings of the 14th International Conference on Information Processing in Sensor Networks, pp. 154–165 (2015)

    Google Scholar 

  60. Wu, Z., Xu, Q., Li, J., Fu, C., Xuan, Q., Xiang, Y.: Passive indoor localization based on CSI and Naive Bayes classification. IEEE Trans. Sys. Man Cybern. Syst. 48(9), 1566–1577 (2017)

    Article  Google Scholar 

  61. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Proceedings of the European Conference on Computer Vision, pp. 305–321 (2018)

    Google Scholar 

  62. Xie, Y., Li, Z., Li, M.: Precise power delay profiling with commodity wifi. In: Proceedings of the 21st Annual international conference on Mobile Computing and Networking, pp. 53–64 (2015)

    Google Scholar 

  63. Xu, S., He, Z., Shi, W., Wang, Y., Ohtsuki, T., Guiy, G.: Cross-person activity recognition method using snapshot ensemble learning. In: 2022 IEEE 96th Vehicular Technology Conference, pp. 1–5. IEEE (2022)

    Google Scholar 

  64. Yang, J., et al.: Sensefi: a library and benchmark on deep-learning-empowered wifi human sensing. Patterns 4(3) (2023)

    Google Scholar 

  65. Yang, J., Chen, X., Zou, H., Wang, D., Xie, L.: Autofi: towards automatic wifi human sensing via geometric self-supervised learning. IEEE Internet Things J. (2022)

    Google Scholar 

  66. Yang, J., Chen, X., Zou, H., Wang, D., Xu, Q., Xie, L.: Efficientfi: toward large-scale lightweight wifi sensing via CSI compression. IEEE Internet Things J. 9(15), 13086–13095 (2022)

    Article  Google Scholar 

  67. Yang, J., et al.: MM-Fi: multi-modal non-intrusive 4d human dataset for versatile wireless sensing. arXiv preprint arXiv:2305.10345 (2023)

  68. Yang, J., Liu, Y., Liu, Z., Wu, Y., Li, T., Yang, Y.: A framework for human activity recognition based on wifi CSI signal enhancement. Int. J. Antennas Propag. 2021, 1–18 (2021)

    Google Scholar 

  69. Yang, Z., Zhang, Y., Zhang, Q.: Rethinking fall detection with wi-fi. IEEE Trans. Mob, Comput (2022)

    Google Scholar 

  70. Yousefi, S., Narui, H., Dayal, S., Ermon, S., Valaee, S.: A survey on behavior recognition using wifi channel state information. IEEE Commun. Mag. 55(10), 98–104 (2017)

    Article  Google Scholar 

  71. Zhang, J., Tang, Z., Li, M., Fang, D., Nurmi, P., Wang, Z.: Crosssense: towards cross-site and large-scale wifi sensing. In: Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, pp. 305–320 (2018)

    Google Scholar 

  72. Zhang, R., Jiang, C., Wu, S., Zhou, Q., Jing, X., Mu, J.: Wi-fi sensing for joint gesture recognition and human identification from few samples in human-computer interaction. IEEE J. Sel. Areas Commun. 40(7), 2193–2205 (2022)

    Article  Google Scholar 

  73. Zhang, R., Wu, S., Jiang, C., Cui, Y., Jing, X.: Wirelessid: device-free human identification using gesture signatures in CSI. In: 2021 IEEE 94th Vehicular Technology Conference, pp. 1–4. IEEE (2021)

    Google Scholar 

  74. Zhang, Y., et al.: Widar3.0: zero-effort cross-domain gesture recognition with wi-fi. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 8671–8688 (2021)

    Google Scholar 

  75. Zhang, Y., Yin, Y., Wang, Y., Ai, J., Wu, D.: CSI-based location-independent human activity recognition with parallel convolutional networks. Comput. Commun. 197, 87–95 (2023)

    Article  Google Scholar 

  76. Zhao, M., et al.: Through-wall human pose estimation using radio signals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7356–7365 (2018)

    Google Scholar 

  77. Zhao, M., et al.: RF-based 3D skeletons. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, pp. 267–281 (2018)

    Google Scholar 

  78. Zhou, Y., Huang, H., Yuan, S., Zou, H., Xie, L., Yang, J.: Metafi++: wifi-enabled transformer-based human pose estimation for metaverse avatar simulation. IEEE Internet Things J. (2023)

    Google Scholar 

  79. Zhou, Z., Wang, F., Yu, J., Ren, J., Wang, Z., Gong, W.: Target-oriented semi-supervised domain adaptation for wifi-based har. In: IEEE INFOCOM 2022-IEEE Conference on Computer Communications, pp. 420–429. IEEE (2022)

    Google Scholar 

  80. Zhu, G., Wu, C., Zeng, X., Wang, B., Liu, K.R.: Who moved my cheese? Human and non-human motion recognition with wifi. In: 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems, pp. 476–484. IEEE (2022)

    Google Scholar 

  81. Zou, H., Zhou, Y., Yang, J., Jiang, H., Xie, L., Spanos, C.J.: Deepsense: device-free human activity recognition via autoencoder long-term recurrent convolutional network. In: 2018 IEEE International Conference on Communications, pp. 1–6. IEEE (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuokang Huang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 15598 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, S. et al. (2025). WiMANS: A Benchmark Dataset for WiFi-Based Multi-user Activity Sensing. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15100. Springer, Cham. https://doi.org/10.1007/978-3-031-72946-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72946-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72945-4

  • Online ISBN: 978-3-031-72946-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics