Abstract
WiFi-based human sensing has exhibited remarkable potential to analyze user behaviors in a non-intrusive and device-free manner, benefiting applications as diverse as smart homes and healthcare. However, most previous works focus on single-user sensing, which has limited practicability in scenarios involving multiple users. Although recent studies have begun to investigate WiFi-based multi-user sensing, there remains a lack of benchmark datasets to facilitate reproducible and comparable research. To bridge this gap, we present WiMANS, to our knowledge, the first dataset for multi-user sensing based on WiFi. WiMANS contains over 9.4 h of dual-band WiFi Channel State Information (CSI), as well as synchronized videos, monitoring the simultaneous activities of multiple users. We exploit WiMANS to benchmark the performance of state-of-the-art WiFi-based human sensing models and video-based models, posing new challenges and opportunities for future work. We believe WiMANS can push the boundaries of current studies and catalyze the research on WiFi-based multi-user sensing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahadori, N., Ashdown, J., Restuccia, F.: Rewis: Reliable wi-fi sensing through few-shot multi-antenna multi-receiver CSI learning. In: 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 50–59. IEEE (2022)
Baha’A, A., Almazari, M.M., Alazrai, R., Daoud, M.I.: A dataset for wi-fi-based human activity recognition in line-of-sight and non-line-of-sight indoor environments. Data Brief 33, 106534 (2020)
Bocus, M.J., et al.: Operanet, a multimodal activity recognition dataset acquired from radio frequency and vision-based sensors. Sci. Data 9(1), 474 (2022)
Brinke, J.K., Meratnia, N.: Dataset: channel state information for different activities, participants and days. In: Proceedings of the 2nd Workshop on Data Acquisition to Analysis, pp. 61–64 (2019)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, July 2017
Chen, C., Zhou, G., Lin, Y.: Cross-domain wifi sensing with channel state information: a survey. ACM Comput. Surv. 55(11), 1–37 (2023)
Chen, Z., Zhang, L., Jiang, C., Cao, Z., Cui, W.: WiFi CSI based passive human activity recognition using attention based BLSTM. IEEE Trans. Mob. Comput. 18(11), 2714–2724 (2018)
Ding, J., Wang, Y., Fu, X.: Wihi: wifi based human identity identification using deep learning. IEEE Access 8, 129246–129262 (2020)
Ding, J., Wang, Y., Si, H., Gao, S., Xing, J.: Three-dimensional indoor localization and tracking for mobile target based on WiFi sensing. IEEE Internet Things J. 9(21), 21687–21701 (2022)
Ding, J., et al.: Multimodal fusion-GMM based gesture recognition for smart home by wifi sensing. In: 2022 IEEE 95th Vehicular Technology Conference, pp. 1–6. IEEE (2022)
Ding, S., Chen, Z., Zheng, T., Luo, J.: RF-Net: a unified meta-learning framework for rf-enabled one-shot human activity recognition. In: Proceedings of the 18th Conference on Embedded Networked Sensor Systems, pp. 517–530 (2020)
Duan, P., Li, C., Li, J., Chen, X., Wang, C., Wang, E.: Wisdom: wi-fi based contactless multi-user activity recognition. IEEE Internet Things J. (2022)
Fan, H., et al.: Multiscale vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6824–6835 (2021)
Fard Moshiri, P., Shahbazian, R., Nabati, M., Ghorashi, S.A.: A CSI-based human activity recognition using deep learning. Sensors 21(21), 7225 (2021)
Gao, Q., Wang, J., Ma, X., Feng, X., Wang, H.: CSI-based device-free wireless localization and activity recognition using radio image features. IEEE Trans. Veh. Technol. 66(11), 10346–10356 (2017)
Ge, Y., et al.: Contactless wifi sensing and monitoring for future healthcare-emerging trends, challenges, and opportunities. IEEE Rev. Biomed. Eng. 16, 171–191 (2022)
Geng, J., Huang, D., De la Torre, F.: Densepose from wifi. arXiv preprint arXiv:2301.00250 (2022)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)
Gringoli, F., Cominelli, M., Blanco, A., Widmer, J.: AX-CSI: enabling CSI extraction on commercial 802.11 ax Wi-Fi platforms. In: Proceedings of the 15th ACM Workshop on Wireless Network Testbeds, Experimental evaluation & CHaracterization, pp. 46–53 (2022)
Gu, Y., et al.: WiGRUNT: wifi-enabled gesture recognition using dual-attention network. IEEE Trans. Hum.-Mach. Syst. 52(4), 736–746 (2022)
Guo, L., et al.: WiAR: a public dataset for wifi-based activity recognition. IEEE Access 7, 154935–154945 (2019)
Guo, L., et al.: Towards CSI-based diversity activity recognition via LSTM-CNN encoder-decoder neural network. Neurocomputing 444, 260–273 (2021)
Halperin, D., Hu, W., Sheth, A., Wetherall, D.: Tool release: gathering 802.11 n traces with channel state information. ACM SIGCOMM Comput. Commun. Rev. 41(1), 53 (2011)
He, J., Yang, W.: IMAR: multi-user continuous action recognition with wifi signals. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6(3), 1–27 (2022)
Hernandez, S.M., Bulut, E.: Wifi sensing on the edge: signal processing techniques and challenges for real-world systems. IEEE Commun. Surv, Tutor (2022)
Hu, P., Tang, C., Yin, K., Zhang, X.: WiGR: a practical wi-fi-based gesture recognition system with a lightweight few-shot network. Appl. Sci. 11(8), 3329 (2021)
Huang, Q., Chen, H., Zhang, Q.: Joint design of sensing and communication systems for smart homes. IEEE Netw. 34(6), 191–197 (2020)
Hussain, Z., Sheng, Q.Z., Zhang, W.E.: A review and categorization of techniques on device-free human activity recognition. J. Netw. Comput. Appl. 167, 102738 (2020)
Jiang, W., et al.: Towards 3D human pose construction using wifi. In: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, pp. 1–14 (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)
Kong, H., et al.: Multiauth: enable multi-user authentication with single commodity wifi device. In: Proceedings of the Twenty-second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, pp. 31–40 (2021)
Kong, H., et al.: Push the limit of wifi-based user authentication towards undefined gestures. In: IEEE INFOCOM 2022-IEEE Conference on Computer Communications, pp. 410–419. IEEE (2022)
Li, B., Cui, W., Wang, W., Zhang, L., Chen, Z., Wu, M.: Two-stream convolution augmented transformer for human activity recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 286–293 (2021)
Li, T., Fan, L., Zhao, M., Liu, Y., Katabi, D.: Making the invisible visible: action recognition through walls and occlusions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 872–881 (2019)
Li, Y., et al.: MVITV2: improved multiscale vision transformers for classification and detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4804–4814 (2022)
Lin, Y., Gao, Y., Li, B., Dong, W.: Revisiting indoor intrusion detection with wifi signals: do not panic over a pet! IEEE Internet Things J. 7(10), 10437–10449 (2020)
Liu, Z., et al.: Video swin transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3202–3211 (2022)
Ma, Y., Zhou, G., Wang, S., Zhao, H., Jung, W.: Signfi: sign language recognition using wifi. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(1), 1–21 (2018)
Meneghello, F., Chen, C., Cordeiro, C., Restuccia, F.: Toward integrated sensing and communications in IEEE 802.11 bf wi-fi networks. IEEE Commun. Mag. 61(7), 128–133 (2023)
Mo, H., Kim, S.: A deep learning-based human identification system with wi-fi CSI data augmentation. IEEE Access 9, 91913–91920 (2021)
Moshiri, P.F., Nabati, M., Shahbazian, R., Ghorashi, S.A.: CSI-based human activity recognition using convolutional neural networks. In: 2021 11th International Conference on Computer Engineering and Knowledge, pp. 7–12. IEEE (2021)
Nirmal, I., Khamis, A., Hassan, M., Hu, W., Zhu, X.: Deep learning for radio-based human sensing: recent advances and future directions. IEEE Commun. Surv. Tutor. 23(2), 995–1019 (2021)
Palipana, S., Rojas, D., Agrawal, P., Pesch, D.: FallDeFi: ubiquitous fall detection using commodity wi-fi devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1(4), 1–25 (2018)
Qian, K., Wu, C., Yang, Z., Liu, Y., Jamieson, K.: Widar: decimeter-level passive tracking via velocity monitoring with commodity wi-fi. In: Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 1–10 (2017)
Qian, K., Wu, C., Zhang, Y., Zhang, G., Yang, Z., Liu, Y.: Widar2.0: passive human tracking with a single wi-fi link. In: Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, pp. 350–361 (2018)
Ren, Y., Wang, Z., Wang, Y., Tan, S., Chen, Y., Yang, J.: Gopose: 3D human pose estimation using wifi. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6(2), 1–25 (2022)
Shalaby, E., ElShennawy, N., Sarhan, A.: Utilizing deep learning models in CSI-based human activity recognition. Neural Comput. Appl. 1–18 (2022)
Tan, S., Ren, Y., Yang, J., Chen, Y.: Commodity wifi sensing in ten years: status, challenges, and opportunities. IEEE Internet Things J. 9(18), 17832–17843 (2022)
Tan, S., Zhang, L., Wang, Z., Yang, J.: Multitrack: multi-user tracking and activity recognition using commodity wifi. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2019)
Tian, Z., Li, Y., Zhou, M., Li, Z.: Wifi-based adaptive indoor passive intrusion detection. In: 2018 IEEE 23rd International Conference on Digital Signal Processing, pp. 1–5. IEEE (2018)
Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Venkatnarayan, R.H., Page, G., Shahzad, M.: Multi-user gesture recognition using wifi. In: Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, pp. 401–413 (2018)
Wang, D., Yang, J., Cui, W., Xie, L., Sun, S.: Multimodal CSI-based human activity recognition using GANs. IEEE Internet Things J. 8(24), 17345–17355 (2021)
Wang, D., Yang, J., Cui, W., Xie, L., Sun, S.: Caution: a robust wifi-based human authentication system via few-shot open-set recognition. IEEE Internet Things J. 9(18), 17323–17333 (2022)
Wang, F., Feng, J., Zhao, Y., Zhang, X., Zhang, S., Han, J.: Joint activity recognition and indoor localization with wifi fingerprints. IEEE Access 7, 80058–80068 (2019)
Wang, F., Zhou, S., Panev, S., Han, J., Huang, D.: Person-in-wifi: fine-grained person perception using wifi. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5452–5461 (2019)
Wang, W., Liu, A.X., Shahzad, M., Ling, K., Lu, S.: Understanding and modeling of wifi signal based human activity recognition. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pp. 65–76 (2015)
Wei, B., Hu, W., Yang, M., Chou, C.T.: Radio-based device-free activity recognition with radio frequency interference. In: Proceedings of the 14th International Conference on Information Processing in Sensor Networks, pp. 154–165 (2015)
Wu, Z., Xu, Q., Li, J., Fu, C., Xuan, Q., Xiang, Y.: Passive indoor localization based on CSI and Naive Bayes classification. IEEE Trans. Sys. Man Cybern. Syst. 48(9), 1566–1577 (2017)
Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Proceedings of the European Conference on Computer Vision, pp. 305–321 (2018)
Xie, Y., Li, Z., Li, M.: Precise power delay profiling with commodity wifi. In: Proceedings of the 21st Annual international conference on Mobile Computing and Networking, pp. 53–64 (2015)
Xu, S., He, Z., Shi, W., Wang, Y., Ohtsuki, T., Guiy, G.: Cross-person activity recognition method using snapshot ensemble learning. In: 2022 IEEE 96th Vehicular Technology Conference, pp. 1–5. IEEE (2022)
Yang, J., et al.: Sensefi: a library and benchmark on deep-learning-empowered wifi human sensing. Patterns 4(3) (2023)
Yang, J., Chen, X., Zou, H., Wang, D., Xie, L.: Autofi: towards automatic wifi human sensing via geometric self-supervised learning. IEEE Internet Things J. (2022)
Yang, J., Chen, X., Zou, H., Wang, D., Xu, Q., Xie, L.: Efficientfi: toward large-scale lightweight wifi sensing via CSI compression. IEEE Internet Things J. 9(15), 13086–13095 (2022)
Yang, J., et al.: MM-Fi: multi-modal non-intrusive 4d human dataset for versatile wireless sensing. arXiv preprint arXiv:2305.10345 (2023)
Yang, J., Liu, Y., Liu, Z., Wu, Y., Li, T., Yang, Y.: A framework for human activity recognition based on wifi CSI signal enhancement. Int. J. Antennas Propag. 2021, 1–18 (2021)
Yang, Z., Zhang, Y., Zhang, Q.: Rethinking fall detection with wi-fi. IEEE Trans. Mob, Comput (2022)
Yousefi, S., Narui, H., Dayal, S., Ermon, S., Valaee, S.: A survey on behavior recognition using wifi channel state information. IEEE Commun. Mag. 55(10), 98–104 (2017)
Zhang, J., Tang, Z., Li, M., Fang, D., Nurmi, P., Wang, Z.: Crosssense: towards cross-site and large-scale wifi sensing. In: Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, pp. 305–320 (2018)
Zhang, R., Jiang, C., Wu, S., Zhou, Q., Jing, X., Mu, J.: Wi-fi sensing for joint gesture recognition and human identification from few samples in human-computer interaction. IEEE J. Sel. Areas Commun. 40(7), 2193–2205 (2022)
Zhang, R., Wu, S., Jiang, C., Cui, Y., Jing, X.: Wirelessid: device-free human identification using gesture signatures in CSI. In: 2021 IEEE 94th Vehicular Technology Conference, pp. 1–4. IEEE (2021)
Zhang, Y., et al.: Widar3.0: zero-effort cross-domain gesture recognition with wi-fi. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 8671–8688 (2021)
Zhang, Y., Yin, Y., Wang, Y., Ai, J., Wu, D.: CSI-based location-independent human activity recognition with parallel convolutional networks. Comput. Commun. 197, 87–95 (2023)
Zhao, M., et al.: Through-wall human pose estimation using radio signals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7356–7365 (2018)
Zhao, M., et al.: RF-based 3D skeletons. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, pp. 267–281 (2018)
Zhou, Y., Huang, H., Yuan, S., Zou, H., Xie, L., Yang, J.: Metafi++: wifi-enabled transformer-based human pose estimation for metaverse avatar simulation. IEEE Internet Things J. (2023)
Zhou, Z., Wang, F., Yu, J., Ren, J., Wang, Z., Gong, W.: Target-oriented semi-supervised domain adaptation for wifi-based har. In: IEEE INFOCOM 2022-IEEE Conference on Computer Communications, pp. 420–429. IEEE (2022)
Zhu, G., Wu, C., Zeng, X., Wang, B., Liu, K.R.: Who moved my cheese? Human and non-human motion recognition with wifi. In: 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems, pp. 476–484. IEEE (2022)
Zou, H., Zhou, Y., Yang, J., Jiang, H., Xie, L., Spanos, C.J.: Deepsense: device-free human activity recognition via autoencoder long-term recurrent convolutional network. In: 2018 IEEE International Conference on Communications, pp. 1–6. IEEE (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, S. et al. (2025). WiMANS: A Benchmark Dataset for WiFi-Based Multi-user Activity Sensing. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15100. Springer, Cham. https://doi.org/10.1007/978-3-031-72946-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-72946-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72945-4
Online ISBN: 978-3-031-72946-1
eBook Packages: Computer ScienceComputer Science (R0)