Skip to main content

VeCLIP: Improving CLIP Training via Visual-Enriched Captions

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Large-scale web-crawled datasets are fundamental for the success of pre-training vision-language models, such as CLIP. However, the inherent noise and potential irrelevance of web-crawled AltTexts pose challenges in achieving precise image-text alignment. Existing methods utilizing large language models (LLMs) for caption rewriting have shown promise on small, curated datasets like CC3M and CC12M. This study introduces a scalable pipeline for noisy caption rewriting. Unlike recent LLM rewriting techniques, we emphasize the incorporation of visual concepts into captions, termed as Visual-enriched Captions (VeCap). To ensure data diversity, we propose a novel mixed training scheme that optimizes the utilization of AltTexts alongside newly generated VeCap. We showcase the adaptation of this method for training CLIP on large-scale web-crawled datasets, termed VeCLIP. Employing this cost-effective pipeline, we effortlessly scale our dataset up to 300 million samples named VeCap dataset. Our results show significant advantages in image-text alignment and overall model performance. For example, VeCLIP achieves up to +25.2% gain in COCO and Flickr30k retrieval tasks under the 12M setting. For data efficiency, VeCLIP achieves +3% gain while only using 14% of the data employed in the vanilla CLIP and 11% in ALIGN. We also note the VeCap data is complementary with other well curated datasets good for zero-shot classification tasks. When combining VeCap and DFN, our model can achieve strong performance on both of image-text retrieval and zero-shot classification tasks, e.g., 83.1% accuracy@1 on ImageNet zero-shot for a H/14 model. We release our codes and model weights at https://github.com/apple/ml-veclip.

H. Zhang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note we took the DFN-H/14 model from its original paper, which is trained 7 epochs, our model is only trained roughly around 2 epochs.

References

  1. Abbas, A., Tirumala, K., Simig, D., Ganguli, S., Morcos, A.S.: Semdedup: data-efficient learning at web-scale through semantic deduplication. arXiv preprint arXiv:2303.09540 (2023)

  2. Betker, J., et al.: Improving image generation with better captions. OpenAI (2023)

    Google Scholar 

  3. Bradbury, J., et al.: JAX: composable transformations of Python+NumPy programs. Github (2018). http://github.com/google/jax

  4. Cao, L., et al.: Less is more: removing text-regions improves clip training efficiency and robustness. arXiv preprint arXiv:2305.05095 (2023)

  5. Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12m: pushing web-scale image-text pre-training to recognize long-tail visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3558–3568 (2021)

    Google Scholar 

  6. Chen, L., et al.: Sharegpt4v: improving large multi-modal models with better captions. arXiv preprint arXiv:2311.12793 (2023)

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  8. Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105(10), 1865–1883 (2017). https://doi.org/10.1109/jproc.2017.2675998

    Article  Google Scholar 

  9. Cherti, M., et al.: Reproducible scaling laws for contrastive language-image learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2818–2829 (2023)

    Google Scholar 

  10. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., , Vedaldi, A.: Describing textures in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  12. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2020)

    Google Scholar 

  13. Fan, L., Krishnan, D., Isola, P., Katabi, D., Tian, Y.: Improving clip training with language rewrites. arXiv preprint arXiv:2305.20088 (2023)

  14. Fang, A., Jose, A.M., Jain, A., Schmidt, L., Toshev, A.T., Shankar, V.: Data filtering networks. In: NeurIPS 2023 Workshop on Distribution Shifts: New Frontiers with Foundation Models (2023)

    Google Scholar 

  15. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: 2004 Conference on Computer Vision and Pattern Recognition Workshop, pp. 178–178. IEEE (2004)

    Google Scholar 

  16. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  17. Helber, P., Bischke, B., Dengel, A., Borth, D.: Introducing Eurosat: a novel dataset and deep learning benchmark for land use and land cover classification. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 204–207. IEEE (2018)

    Google Scholar 

  18. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916. PMLR (2021)

    Google Scholar 

  19. Krizhevsky, A.: Learning multiple layers of features from tiny images. Can. Inst. Adv. Res. (2009)

    Google Scholar 

  20. Kwon, G., Cai, Z., Ravichandran, A., Bas, E., Bhotika, R., Soatto, S.: Masked vision and language modeling for multi-modal representation learning. In: The Eleventh International Conference on Learning Representations (2023)

    Google Scholar 

  21. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: International Conference on Machine Learning, pp. 12888–12900. PMLR (2022)

    Google Scholar 

  22. Li, Y., Fan, H., Hu, R., Feichtenhofer, C., He, K.: Scaling language-image pre-training via masking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23390–23400 (2023)

    Google Scholar 

  23. Lin, T.-Y.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014 Part V. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  24. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. arXiv preprint arXiv:2304.08485 (2023)

  25. Maini, P., Goyal, S., Lipton, Z.C., Kolter, J.Z., Raghunathan, A.: T-mars: improving visual representations by circumventing text feature learning. arXiv preprint arXiv:2307.03132 (2023)

  26. Mu, N., Kirillov, A., Wagner, D., Xie, S.: Slip: self-supervision meets language-image pre-training. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV. LNCS, vol. 13686, pp. 529–544. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19809-0_30

    Chapter  Google Scholar 

  27. Nguyen, T., Gadre, S.Y., Ilharco, G., Oh, S., Schmidt, L.: Improving multimodal datasets with image captioning. arXiv preprint arXiv:2307.10350 (2023)

  28. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729. IEEE (2008)

    Google Scholar 

  29. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.: Cats and dogs. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3498–3505. IEEE (2012)

    Google Scholar 

  30. Pham, H., et al.: Combined scaling for zero-shot transfer learning. arXiv preprint arXiv:2111.10050 (2021)

  31. Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-sentence models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2641–2649 (2015)

    Google Scholar 

  32. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763 (2021)

    Google Scholar 

  33. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do imagenet classifiers generalize to imagenet? In: International Conference on Machine Learning, pp. 5389–5400. PMLR (2019)

    Google Scholar 

  34. Schall, K., Barthel, K.U., Hezel, N., Jung, K.: GPR1200: a benchmark for general-purpose content-based image retrieval. In: Þór Jónsson, B., et al. (eds.) MMM 2022. LNCS, vol. 13141, pp. 205–216. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98358-1_17

    Chapter  Google Scholar 

  35. Schuhmann, C., et al.: Laion-5b: An open large-scale dataset for training next generation image-text models. Adv. Neural. Inf. Process. Syst. 35, 25278–25294 (2022)

    Google Scholar 

  36. Schuhmann, C., et al.: Laion-400m: Open dataset of clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114 (2021)

  37. Sennrich, R., Haddow, B., Birch, A.: Improving neural machine translation models with monolingual data. arXiv preprint arXiv:1511.06709 (2015)

  38. Touvron, H., et al.: Llama: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)

  39. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNs for digital pathology. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018 Part II. LNCS, vol. 11071, pp. 210–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_24

    Chapter  Google Scholar 

  40. Wei, J., Zou, K.: Eda: easy data augmentation techniques for boosting performance on text classification tasks. arXiv preprint arXiv:1901.11196 (2019)

  41. Wu, W., et al.: Mofi: learning image representations from noisy entity annotated images. arXiv preprint arXiv:2306.07952 (2023)

  42. Xu, H., et al.: Demystifying clip data. arXiv preprint arXiv:2309.16671 (2023)

  43. Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, M., Wu, Y.: Coca: contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917 (2022)

  44. Yuan, L., et al.: Florence: a new foundation model for computer vision. arXiv preprint arXiv:2111.11432 (2021)

  45. Yuval, N.: Reading digits in natural images with unsupervised feature learning. In: Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  46. Zhai, X., et al.: A large-scale study of representation learning with the visual task adaptation benchmark. arXiv preprint arXiv:1910.04867 (2019)

  47. Zhai, X., et al.: Lit: zero-shot transfer with locked-image text tuning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18123–18133 (2022)

    Google Scholar 

  48. Zheng, L., et al.: Judging LLM-as-a-judge with MT-bench and chatbot arena (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinfei Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4118 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, Z. et al. (2025). VeCLIP: Improving CLIP Training via Visual-Enriched Captions. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15100. Springer, Cham. https://doi.org/10.1007/978-3-031-72946-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72946-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72945-4

  • Online ISBN: 978-3-031-72946-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics