Abstract
Seam carving is an image editing method that enables content-aware resizing, including operations like removing objects. However, the seam-finding strategy based on dynamic programming or graph-cut limits its applications to broader visual data formats and degrees of freedom for editing. Our observation is that describing the editing and retargeting of images more generally by a deformation field yields a generalisation of content-aware deformations. We propose to learn a deformation with a neural network that keeps the output plausible while trying to deform it only in places with low information content. This technique applies to different kinds of visual data, including images, 3D scenes given as neural radiance fields, or even polygon meshes. Experiments conducted on different visual data show that our method achieves better content-aware retargeting compared to previous methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ardizzone, L., et al.: Analyzing inverse problems with invertible neural networks. CoRR abs/1808.04730 (2018). http://arxiv.org/abs/1808.04730
Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Trans. Graph. 26(3), 10 (2007)
Basha, T.D., Moses, Y., Avidan, S.: Stereo seam carving a geometrically consistent approach. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2513–2525 (2013)
Berkiten, S., Halber, M., Solomon, J., Ma, C., Li, H., Rusinkiewicz, S.: Learning detail transfer based on geometric features. Comput. Graph. Forum 36(2), 361–373 (2017)
Cai, H., Feng, W., Feng, X., Wang, Y., Zhang, J.: Neural surface reconstruction of dynamic scenes with monocular RGB-D camera. In: Neural Information Processing Systems (NeurIPS) (2022)
Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: CVPR, pp. 5939–5948 (2019)
Dong, W., Bao, G., Zhang, X., Paul, J.: Fast multi-operator image resizing and evaluation. J. Comput. Sci. Technol. 27(1), 121–134 (2012)
Dong, W., Zhou, N., Lee, T., Wu, F., Kong, Y., Zhang, X.: Summarization-based image resizing by intelligent object carving. IEEE Trans. Vis. Comput. Graph. 20(1), 1 (2014). https://doi.org/10.1109/TVCG.2013.103
Dong, W., Zhou, N., Paul, J., Zhang, X.: Optimized image resizing using seam carving and scaling. ACM Trans. Graph. 28(5), 125 (2009)
Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Pocock, L. (ed.) Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp. 341–346. ACM (2001)
Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV, pp. 1033–1038 (1999)
Newton2 at English Wikipedia: Broadway tower (2007). https://commons.wikimedia.org/wiki/File:Broadway_tower.jpg
Garbin, S.Jet al.: VolTeMorph: realtime, controllable and generalisable animation of volumetric representations. arXiv:2208.00949 (2022)
Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: Neural Information Processing Systems, pp. 262–270 (2015)
Gu, J., Zhai, S., Zhang, Y., Susskind, J., Jaitly, N.: Matryoshka diffusion models. arXiv preprint arXiv:2310.15111 (2023)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385
Henzler, P., Deschaintre, V., Mitra, N.J., Ritschel, T.: Generative modelling of BRDF textures from flash images. ACM Trans. Graph. 40(6), 284:1–284:13 (2021)
Henzler, P., Mitra, N.J., , Ritschel, T.: Learning a neural 3D texture space from 2D exemplars. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Hertz, A., Hanocka, R., Giryes, R., Cohen-Or, D.: Deep geometric texture synthesis. ACM Trans. Graph. 39(4), 108:1–108:11 (2020)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Huang, Y., Cao, Y., Lai, Y., Shan, Y., Gao, L.: NeRF-texture: texture synthesis with neural radiance fields. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 43:1–43:10 (2023)
Kajiura, N., Kosugi, S., Wang, X., Yamasaki, T.: Self-play reinforcement learning for fast image retargeting. CoRR abs/2010.00909 (2020). https://arxiv.org/abs/2010.00909
Kawar, B., et al.: Imagic: text-based real image editing with diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6007–6017 (2023)
Kopf, J., Fu, C.W., Cohen-Or, D., Deussen, O., Lischinski, D., Wong, T.T.: Solid texture synthesis from 2d exemplars. ACM Trans. Graph. 26(3), 2:1–2:9 (2007)
Lai, Y., Hu, S., Gu, X., Martin, R.R.: Geometric texture synthesis and transfer via geometry images. In: Proceedings of the Tenth ACM Symposium on Solid and Physical Modeling, pp. 15–26. ACM (2005)
Liu, F., Gleicher, M.: Automatic image retargeting with fisheye-view warping. In: Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology, pp. 153–162. ACM (2005)
Liu, F., Gleicher, M.: Video retargeting: automating pan and scan. In: Nahrstedt, K., Turk, M.A., Rui, Y., Klas, W., Mayer-Patel, K. (eds.) Proceedings of the 14th ACM International Conference on Multimedia, pp. 241–250. ACM (2006)
Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3D gaussians: tracking by persistent dynamic view synthesis. In: 3DV (2024)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR, pp. 4460–4470 (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Moreira, T.P., Santana, M.C.S., Passos, L.A., Papa, J.P., da Costa, K.A.P.: An end-to-end approach for seam carving detection using deep neural networks. In: Pinho, A.J., Georgieva, P., Teixeira, L.F., Sánchez, J.A. (eds.) IbPRIA 2022. LNCS, vol. 13256, pp. 447–457. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04881-4_35
Nam, S., Ahn, W., Yu, I., Kwon, M., Son, M., Lee, H.: Deep convolutional neural network for identifying seam-carving forgery. IEEE Trans. Circuits Syst. Video Technol. 31(8), 3308–3326 (2021)
Nataraj, L., Gudavalli, C., Mohammed, T.M., Chandrasekaran, S., Manjunath, B.S.: Seam carving detection and localization using two-stage deep neural networks. CoRR abs/2109.01764 (2021)
North, R.: Grand theft auto v. Steam (2015). https://www.rockstargames.com/V/
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: CVPR, pp. 165–174 (2019)
Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-Brualla, R.: NeRFies: deformable neural radiance fields. In: ICCV, pp. 5845–5854 (2021)
Park, K., et al.: HyperNeRF: a higher-dimensional representation for topologically varying neural radiance fields. ACM Trans. Graph. 40(6), 238:1–238:12 (2021)
Peebles, W., Xie, S.: Scalable diffusion models with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205 (2023)
Peng, Y., et al.: CageNeRF: cage-based neural radiance fields for generalized 3D deformation and animation. In: Advances in Neural Information Processing Systems (2022)
Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)
Richter, S.R., AlHaija, H.A., Koltun, V.: Enhancing photorealism enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 1700–1715 (2022)
Rubinstein, M., Gutierrez, D., Sorkine, O., Shamir, A.: A comparative study of image retargeting. ACM Trans. Graph. (Proc. SIGGRAPH ASIA) 29(6), 160:1–160:10 (2010)
Rubinstein, M., Shamir, A., Avidan, S.: Improved seam carving for video retargeting. ACM Trans. Graph. 27(3), 16 (2008)
Rubinstein, M., Shamir, A., Avidan, S.: Multi-operator media retargeting. ACM Trans. Graph. 28(3), 23 (2009). https://doi.org/10.1145/1531326.1531329
Shaham, T.R., Dekel, T., Michaeli, T.: SinGAN: learning a generative model from a single natural image. In: ICCV, pp. 4569–4579 (2019)
Song, E., Lee, M., Lee, S.: CarvingNet: content-guided seam carving using deep convolution neural network. IEEE Access 7, 284–292 (2019). https://doi.org/10.1109/ACCESS.2018.2885347
Sorkine-Hornung, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Symposium on Geometry Processing (2007)
Srinivas, S., Fleuret, F.: Full-gradient representation for neural network visualization. In: Advances in neural information processing systems, vol. 32 (2019)
Tan, W., Yan, B., Lin, C., Niu, X.: Cycle-IR: deep cyclic image retargeting. IEEE Trans. Multimedia 22(7), 1730–1743 (2019)
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. In: Advances in Neural Information Processing Systems, pp. 27171–27183 (2021)
Wei, L., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp. 479–488. ACM (2000)
Wu, G., et al.: 4D Gaussian splatting for real-time dynamic scene rendering. arXiv preprint arXiv:2310.08528 (2023)
Wu, H., Wang, Y., Feng, K., Wong, T., Lee, T., Heng, P.: Resizing by symmetry-summarization. ACM Trans. Graph. 29(6), 159 (2010)
Wu, R., Liu, R., Vondrick, C., Zheng, C.: Sin3dm: Learning a diffusion model from a single 3d textured shape. CoRR abs/2305.15399 (2023)
Wu, R., Zheng, C.: Learning to generate 3D shapes from a single example. ACM Trans. Graphics (TOG) 41(6) (2022)
Xian, W., et al.: TextureGAN: controlling deep image synthesis with texture patches. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Xu, T., Harada, T.: Deforming radiance fields with cages. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 159–175. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_10
Yang, Z., Gao, X., Zhou, W., Jiao, S., Zhang, Y., Jin, X.: Deformable 3D gaussians for high-fidelity monocular dynamic scene reconstruction. arXiv preprint arXiv:2309.13101 (2023)
Yuan, Y.J., Sun, Y.T., Lai, Y.K., Ma, Y., Jia, R., Gao, L.: NeRF-editing: geometry editing of neural radiance fields. In: CVPR, pp. 18332–18343 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Elsner, T., Berger, J., Wu, T., Czech, V., Gao, L., Kobbelt, L. (2025). Retargeting Visual Data with Deformation Fields. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15112. Springer, Cham. https://doi.org/10.1007/978-3-031-72949-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-72949-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72948-5
Online ISBN: 978-3-031-72949-2
eBook Packages: Computer ScienceComputer Science (R0)