Skip to main content

The Devil Is in the Statistics: Mitigating and Exploiting Statistics Difference for Generalizable Semi-supervised Medical Image Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15112))

Included in the following conference series:

  • 268 Accesses

Abstract

Despite the recent success of domain generalization in medical image segmentation, voxel-wise annotation for all source domains remains a huge burden. Semi-supervised domain generalization has been proposed very recently to combat this challenge by leveraging limited labeled data along with abundant unlabeled data collected from multiple medical institutions, depending on precisely harnessing unlabeled data while improving generalization simultaneously. In this work, we observe that domain shifts between medical institutions cause disparate feature statistics, which significantly deteriorates pseudo-label quality due to an unexpected normalization process. Nevertheless, this phenomenon could be exploited to facilitate unseen domain generalization. Therefore, we propose 1) multiple statistics-individual branches to mitigate the impact of domain shifts for reliable pseudo-labels and 2) one statistics-aggregated branch for domain-invariant feature learning. Furthermore, to simulate unseen domains with statistics difference, we approach this from two aspects, i.e., a perturbation with histogram matching at image level and a random batch normalization selection strategy at feature level, producing diverse statistics to expand the training distribution. Evaluation results on three medical image datasets demonstrate the effectiveness of our method compared with recent SOTA methods. The code is available at https://github.com/qiumuyang/SIAB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, W., et al.: Semi-supervised learning for network-based cardiac MR image segmentation. In: Descoteaux, M., et al. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29

    Chapter  Google Scholar 

  2. Bai, Y., Chen, D., Li, Q., Shen, W., Wang, Y.: Bidirectional copy-paste for semi-supervised medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11514–11524 (2023)

    Google Scholar 

  3. Bernard, O., et al.: Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  4. Cai, H., Li, S., Qi, L., Yu, Q., Shi, Y., Gao, Y.: Orthogonal annotation benefits barely-supervised medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3302–3311 (2023)

    Google Scholar 

  5. Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the m &ms challenge. IEEE Trans. Med. Imaging 40(12), 3543–3554 (2021)

    Article  Google Scholar 

  6. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  7. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613–2622 (2021)

    Google Scholar 

  8. Cheplygina, V., de Bruijne, M., Pluim, J.P.: Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med. Image Anal. 54, 280–296 (2019)

    Article  Google Scholar 

  9. Dou, Q., Coelho de Castro, D., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  10. Guo, J., Qi, L., Shi, Y.: Domaindrop: suppressing domain-sensitive channels for domain generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19114–19124 (2023)

    Google Scholar 

  11. Hu, S., Liao, Z., Zhang, J., Xia, Y.: Domain and content adaptive convolution based multi-source domain generalization for medical image segmentation. IEEE Trans. Med. Imaging 42(1), 233–244 (2022)

    Article  Google Scholar 

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  13. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 896. Atlanta (2013)

    Google Scholar 

  14. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: meta-learning for domain generalization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  15. Li, X., Yu, L., Chen, H., Fu, C.W., Xing, L., Heng, P.A.: Transformation-consistent self-ensembling model for semisupervised medical image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 523–534 (2020)

    Article  Google Scholar 

  16. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: Feddg: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1013–1023 (2021)

    Google Scholar 

  17. Liu, Q., Dou, Q., Heng, P.-A.: Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 475–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_46

    Chapter  Google Scholar 

  18. Liu, X., Thermos, S., O’Neil, A., Tsaftaris, S.A.: Semi-supervised meta-learning with disentanglement for domain-generalised medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 307–317. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_29

    Chapter  Google Scholar 

  19. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019)

    Google Scholar 

  20. Luo, X., Chen, J., Song, T., Wang, G.: Semi-supervised medical image segmentation through dual-task consistency. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8801–8809 (2021)

    Google Scholar 

  21. Lyu, J., Zhang, Y., Huang, Y., Lin, L., Cheng, P., Tang, X.: Aadg: automatic augmentation for domain generalization on retinal image segmentation. IEEE Trans. Med. Imaging 41(12), 3699–3711 (2022)

    Article  Google Scholar 

  22. Miao, J., Chen, C., Liu, F., Wei, H., Heng, P.A.: Caussl: causality-inspired semi-supervised learning for medical image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21426–21437 (2023)

    Google Scholar 

  23. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  24. Nam, H., Kim, H.E.: Batch-instance normalization for adaptively style-invariant neural networks. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  25. Pizer, S.M., et al.: Adaptive histogram equalization and its variations. Comput. Vision Graph. Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Seo, S., Suh, Y., Kim, D., Kim, G., Han, J., Han, B.: Learning to optimize domain specific normalization for domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 68–83. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_5

    Chapter  Google Scholar 

  28. Shi, Y., et al.: Inconsistency-aware uncertainty estimation for semi-supervised medical image segmentation. IEEE Trans. Med. Imaging 41(3), 608–620 (2021)

    Article  Google Scholar 

  29. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. Adv. Neural. Inf. Process. Syst. 33, 596–608 (2020)

    Google Scholar 

  30. Su, Z., Yao, K., Yang, X., Huang, K., Wang, Q., Sun, J.: Rethinking data augmentation for single-source domain generalization in medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 2366–2374 (2023)

    Google Scholar 

  31. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2020)

    Article  Google Scholar 

  32. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  33. Wang, J., et al.: Generalizing to unseen domains: a survey on domain generalization. IEEE Trans. Knowl. Data Eng. 35, 8052–8072 (2022)

    Google Scholar 

  34. Wang, S., Yu, L., Li, K., Yang, X., Fu, C.W., Heng, P.A.: Dofe: domain-oriented feature embedding for generalizable fundus image segmentation on unseen datasets. IEEE Trans. Med. Imaging 39(12), 4237–4248 (2020)

    Article  Google Scholar 

  35. Wang, X., Zhang, J., Qi, L., Shi, Y.: Generalizable decision boundaries: dualistic meta-learning for open set domain generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11564–11573 (2023)

    Google Scholar 

  36. Wang, Y., Xiao, B., Bi, X., Li, W., Gao, X.: Mcf: mutual correction framework for semi-supervised medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15651–15660 (2023)

    Google Scholar 

  37. Wu, Y., Wu, Z., Wu, Q., Ge, Z., Cai, J.: Exploring smoothness and class-separation for semi-supervised medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention, pp. 34–43. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16443-9_4

  38. Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 297–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_28

    Chapter  Google Scholar 

  39. Yang, L., Qi, L., Feng, L., Zhang, W., Shi, Y.: Revisiting weak-to-strong consistency in semi-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7236–7246 (2023)

    Google Scholar 

  40. Yao, H., Hu, X., Li, X.: Enhancing pseudo label quality for semi-supervised domain-generalized medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 3099–3107 (2022)

    Google Scholar 

  41. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  42. Yuan, J., Liu, Y., Shen, C., Wang, Z., Li, H.: A simple baseline for semi-supervised semantic segmentation with strong data augmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8229–8238 (2021)

    Google Scholar 

  43. Zhou, K., Loy, C.C., Liu, Z.: Semi-supervised domain generalization with stochastic stylematch. Int. J. Comput. Vision 1–11 (2023)

    Google Scholar 

  44. Zhou, Z., Qi, L., Shi, Y.: Generalizable medical image segmentation via random amplitude mixup and domain-specific image restoration. In: Proceedings of the European Conference on Computer Vision, pp. 420–436. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19803-8_25

Download references

Acknowledgements

This work is supported by the NSFC Project (62222604, 62206052, 62192783), Jiangsu Natural Science Foundation Project (BK20210224), China Postdoctoral Science Foundation (2024M750424), the Fundamental Research Funds for the Central Universities (020214380120), the State Key Laboratory Funds for Key Project (ZZKT2024A14), and Shandong Natural Science Foundation (ZR2023MF037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghuan Shi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 240 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, M., Zhang, J., Qi, L., Yu, Q., Shi, Y., Gao, Y. (2025). The Devil Is in the Statistics: Mitigating and Exploiting Statistics Difference for Generalizable Semi-supervised Medical Image Segmentation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15112. Springer, Cham. https://doi.org/10.1007/978-3-031-72949-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72949-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72948-5

  • Online ISBN: 978-3-031-72949-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics