Abstract
Face anti-spoofing (FAS) plays a vital role in preventing face recognition (FR) systems from presentation attacks. Nowadays, FAS systems face the challenge of domain shift, impacting the generalization performance of existing FAS methods. In this paper, we rethink about the inherence of domain shift and deconstruct it into two factors: image style and image quality. Quality influences the purity of the presentation of spoof information, while style affects the manner in which spoof information is presented. Based on our analysis, we propose DiffFAS framework, which quantifies quality as prior information input into the network to counter image quality shift, and performs diffusion-based high-fidelity cross-domain and cross-attack types generation to counter image style shift. DiffFAS transforms easily collectible live faces into high-fidelity attack faces with precise labels while maintaining consistency between live and spoof face identities, which can also alleviate the scarcity of labeled data with novel type attacks faced by nowadays FAS system. We demonstrate the effectiveness of our framework on challenging cross-domain and cross-attack FAS datasets, achieving the state-of-the-art performance. Available at https://github.com/murphytju/DiffFAS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atoum, Y., Liu, Y., Jourabloo, A., Liu, X.: Face anti-spoofing using patch and depth-based CNNs. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 319–328. IEEE (2017)
Boulkenafet, Z., Komulainen, J., Li, L., Feng, X., Hadid, A.: Oulu-NPU: a mobile face presentation attack database with real-world variations. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 612–618. IEEE (2017)
Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: 2012 BIOSIG-Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–7. IEEE (2012)
Deng, J., Guo, J., Ververas, E., Kotsia, I., Zafeiriou, S.: Retinaface: single-shot multi-level face localisation in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5203–5212 (2020)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)
George, A., Marcel, S.: Deep pixel-wise binary supervision for face presentation attack detection. In: 2019 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2019)
George, A., Mostaani, Z., Geissenbuhler, D., Nikisins, O., Anjos, A., Marcel, S.: Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Trans. Inf. Forensics Secur. 15, 42–55 (2019)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)
Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598 (2022)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)
Jia, Y., Zhang, J., Shan, S., Chen, X.: Single-side domain generalization for face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8484–8493 (2020)
Jing, Y., et al.: Dynamic instance normalization for arbitrary style transfer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4369–4376 (2020)
Jourabloo, A., Liu, Y., Liu, X.: Face de-spoofing: anti-spoofing via noise modeling. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 290–306 (2018)
Kim, M., Jain, A.K., Liu, X.: Adaface: quality adaptive margin for face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18750–18759 (2022)
Kim, M., Liu, F., Jain, A., Liu, X.: Dcface: synthetic face generation with dual condition diffusion model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12715–12725 (2023)
Kim, T., Kim, Y., Kim, I., Kim, D.: BASN: enriching feature representation using bipartite auxiliary supervisions for face anti-spoofing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Liao, C.H., Chen, W.C., Liu, H.T., Yeh, Y.R., Hu, M.C., Chen, C.S.: Domain invariant vision transformer learning for face anti-spoofing. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6098–6107 (2023)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, A., et al.: Contrastive context-aware learning for 3D high-fidelity mask face presentation attack detection. IEEE Trans. Inf. Forensics Secur. 17, 2497–2507 (2022)
Liu, S., et al.: Dual reweighting domain generalization for face presentation attack detection. arXiv preprint arXiv:2106.16128 (2021)
Liu, Y., Stehouwer, J., Jourabloo, A., Liu, X.: Deep tree learning for zero-shot face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4680–4689 (2019)
Liu, Y., Stehouwer, J., Liu, X.: On disentangling spoof trace for generic face anti-spoofing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 406–422. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_24
Mehta, S., Rastegari, M.: Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer. arXiv preprint arXiv:2110.02178 (2021)
Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)
Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning, pp. 8162–8171. PMLR (2021)
Rostami, M., Spinoulas, L., Hussein, M., Mathai, J., Abd-Almageed, W.: Detection and continual learning of novel face presentation attacks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14851–14860 (2021)
Shao, R., Lan, X., Li, J., Yuen, P.C.: Multi-adversarial discriminative deep domain generalization for face presentation attack detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10023–10031 (2019)
Si, C., Huang, Z., Jiang, Y., Liu, Z.: Freeu: free lunch in diffusion u-net. arXiv preprint arXiv:2309.11497 (2023)
Sun, Y., Liu, Y., Liu, X., Li, Y., Chu, W.S.: Rethinking domain generalization for face anti-spoofing: separability and alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24563–24574 (2023)
Valevski, D., Kalman, M., Matias, Y., Leviathan, Y.: Unitune: text-driven image editing by fine tuning an image generation model on a single image. arXiv preprint arXiv:2210.09477 (2022)
Wang, C.Y., Lu, Y.D., Yang, S.T., Lai, S.H.: Patchnet: a simple face anti-spoofing framework via fine-grained patch recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20281–20290 (2022)
Wang, H., et al.: Cosface: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)
Wang, W., Liu, P., Zheng, H., Ying, R., Wen, F.: Domain generalization for face anti-spoofing via negative data augmentation. IEEE Trans. Inf. Forensics Secur. (2023)
Wang, Z., et al.: Consistency regularization for deep face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 18, 1127–1140 (2023)
Wang, Z., Wang, Z., Yu, Z., Deng, W., Li, J., Gao, T., Wang, Z.: Domain generalization via shuffled style assembly for face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4123–4133 (2022)
Wen, D., Han, H., Jain, A.K.: Face spoof detection with image distortion analysis. IEEE Trans. Inf. Forensics Secur. 10(4), 746–761 (2015)
Wu, H., Zeng, D., Hu, Y., Shi, H., Mei, T.: Dual spoof disentanglement generation for face anti-spoofing with depth uncertainty learning. IEEE Trans. Circuits Syst. Video Technol. 32(7), 4626–4638 (2021)
Yang, J., Lei, Z., Li, S.Z.: Learn convolutional neural network for face anti-spoofing. arXiv preprint arXiv:1408.5601 (2014)
Yu, Z., Qin, Y., Li, X., Zhao, C., Lei, Z., Zhao, G.: Deep learning for face anti-spoofing: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(5), 5609–5631 (2022)
Yu, Z., Wan, J., Qin, Y., Li, X., Li, S.Z., Zhao, G.: NAS-FAS: static-dynamic central difference network search for face anti-spoofing. IEEE Trans. Pattern Anal. Mach. Intell. 43(9), 3005–3023 (2020)
Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847 (2023)
Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: A face antispoofing database with diverse attacks. In: 2012 5th IAPR International Conference on Biometrics (ICB), pp. 26–31. IEEE (2012)
Zou, Z., et al.: Adversarial domain generalization for surveillance face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6351–6359 (2023)
Acknowledgments
This work was supported in part by the National Natural Science Foundation of China under Grant 62171309 and 62306061, Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515140037), Open Fund of National Engineering Laboratory for Big Data System Computing Technology (Grant No. SZU-BDSC-OF2024-02).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ge, X. et al. (2025). DiffFAS: Face Anti-spoofing via Generative Diffusion Models. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15112. Springer, Cham. https://doi.org/10.1007/978-3-031-72949-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-72949-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72948-5
Online ISBN: 978-3-031-72949-2
eBook Packages: Computer ScienceComputer Science (R0)