Abstract
With the rapid advancement in the performance of deep neural networks (DNNs), there has been significant interest in deploying and incorporating artificial intelligence (AI) systems into real-world scenarios. However, many DNNs lack the ability to represent uncertainty, often exhibiting excessive confidence even when making incorrect predictions. To ensure the reliability of AI systems, particularly in safety-critical cases, DNNs should transparently reflect the uncertainty in their predictions. In this paper, we investigate robust post-hoc uncertainty calibration methods for DNNs within the context of multi-class classification tasks. While previous studies have made notable progress, they still face challenges in achieving robust calibration, particularly in scenarios involving out-of-distribution (OOD). We identify that previous methods lack adaptability to individual input data and struggle to accurately estimate uncertainty when processing inputs drawn from the wild dataset. To address this issue, we introduce a novel instance-wise calibration method based on an energy model. Our method incorporates energy scores instead of softmax confidence scores, allowing for adaptive consideration of DNN uncertainty for each prediction within a logit space. In experiments, we show that the proposed method consistently maintains robust performance across the spectrum, spanning from in-distribution to OOD scenarios, when compared to other state-of-the-art methods. The source code is available at https://github.com/mijoo308/Energy-Calibration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: CVPR (2014)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)
Dosovitskiy, A., et al.: An image is worth \(16\times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML (2017)
Gupta, K., Rahimi, A., Ajanthan, T., Mensink, T., Sminchisescu, C., Hartley, R.: Calibration of neural networks using splines. arXiv preprint arXiv:2006.12800 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Hekler, A., Brinker, T.J., Buettner, F.: Test time augmentation meets post-hoc calibration: uncertainty quantification under real-world conditions. In: AAAI (2023)
Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: ICLR (2019)
Hsu, Y.C., Shen, Y., Jin, H., Kira, Z.: Generalized ODIN: detecting out-of-distribution image without learning from out-of-distribution data. In: CVPR (2020)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
Kull, M., Perello Nieto, M., Kängsepp, M., Silva Filho, T., Song, H., Flach, P.: Beyond temperature scaling: obtaining well-calibrated multi-class probabilities with Dirichlet calibration. In: NIPS (2019)
Kull, M., Silva Filho, T., Flach, P.: Beta calibration: a well-founded and easily implemented improvement on logistic calibration for binary classifiers. In: AISTAT (2017)
LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on energy-based learning. Predicting structured data (2006)
Liu, B., Ben Ayed, I., Galdran, A., Dolz, J.: The devil is in the margin: Margin-based label smoothing for network calibration. In: CVPR (2022)
Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detection. In: NeurIPS (2020)
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)
Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P., Dokania, P.: Calibrating deep neural networks using focal loss. In: NeurIPS (2020)
Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? In: NIPS (2019)
Naeini, M.P., Cooper, G., Hauskrecht, M.: Obtaining well calibrated probabilities using Bayesian binning. In: AAAI (2015)
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop (2011)
Nixon, J., Dusenberry, M.W., Zhang, L., Jerfel, G., Tran, D.: Measuring calibration in deep learning. In: CVPR Workshops (2019)
Patel, V.M., Gopalan, R., Li, R., Chellappa, R.: Visual domain adaptation: a survey of recent advances. IEEE Signal Process. Mag. (2015)
Rahimi, A., Shaban, A., Cheng, C.A., Hartley, R., Boots, B.: Intra order-preserving functions for calibration of multi-class neural networks. In: NeurIPS (2020)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Thulasidasan, S., Chennupati, G., Bilmes, J.A., Bhattacharya, T., Michalak, S.: On mixup training: improved calibration and predictive uncertainty for deep neural networks. In: NIPS (2019)
Tomani, C., Cremers, D., Buettner, F.: Parameterized temperature scaling for boosting the expressive power in post-hoc uncertainty calibration. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13673, pp. 555–569. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19778-9_32
Tomani, C., Gruber, S., Erdem, M.E., Cremers, D., Buettner, F.: Post-hoc uncertainty calibration for domain drift scenarios. In: CVPR (2021)
Tomani, C., Waseda, F.K., Shen, Y., Cremers, D.: Beyond in-domain scenarios: robust density-aware calibration. In: ICML (2023)
Wenger, J., Kjellström, H., Triebel, R.: Non-parametric calibration for classification. In: AISTAT (2020)
Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: a survey. arXiv preprint arXiv:2110.11334 (2021)
Zadrozny, B., Elkan, C.: Obtaining calibrated probability estimates from decision trees and Naive Bayesian classifiers. In: ICML (2001)
Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass probability estimates. In: ACM SIGKDD (2002)
Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)
Zhang, J., Kailkhura, B., Han, T.Y.J.: Mix-n-match: ensemble and compositional methods for uncertainty calibration in deep learning. In: ICML (2020)
Zhong, Z., Cui, J., Liu, S., Jia, J.: Improving calibration for long-tailed recognition. In: CVPR (2021)
Acknowledgements
This work was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF2020R1C1C1004907) and partly supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (RS-2022-00143911, AI Excellence Global Innovative Leader Education Program and 2021-0-01341, Artificial Intelligence Graduate School Program (Chung-Ang university)).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kim, M., Kwon, J. (2025). Uncertainty Calibration with Energy Based Instance-Wise Scaling in the Wild Dataset. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15104. Springer, Cham. https://doi.org/10.1007/978-3-031-72952-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-72952-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72951-5
Online ISBN: 978-3-031-72952-2
eBook Packages: Computer ScienceComputer Science (R0)