Skip to main content

WildRefer: 3D Object Localization in Large-Scale Dynamic Scenes with Multi-modal Visual Data and Natural Language

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15104))

Included in the following conference series:

  • 407 Accesses

Abstract

We introduce the task of 3D visual grounding in large-scale dynamic scenes based on natural linguistic descriptions and online captured multi-modal visual data, including 2D images and 3D LiDAR point clouds. We present a novel method, dubbed WildRefer, for this task by fully utilizing the rich appearance information in images, the position and geometric clues in point cloud as well as the semantic knowledge of language descriptions. Besides, we propose two novel datasets, i.e., STRefer and LifeRefer, which focus on large-scale human-centric daily-life scenarios accompanied with abundant 3D object and natural language annotations. Our datasets are significant for the research of 3D visual grounding in the wild and has huge potential to boost the development of autonomous driving and service robots. Extensive experiments and ablation studies demonstrate that our method achieves state-of-the-art performance on the proposed benchmarks. The code is provided in https://github.com/4DVLab/WildRefer.

This work was supported by NSFC (No. 62206173), Natural Science Foundation of Shanghai (No. 22dz1201900), Shanghai Sailing Program (No. 22YF1428700), MoE Key Laboratory of Intelligent Perception and Human-Machine Collaboration (ShanghaiTech University), Shanghai Frontiers Science Center of Human-centered Artificial Intelligence (ShangHAI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achlioptas, P., Abdelreheem, A., Xia, F., Elhoseiny, M., Guibas, L.: ReferIt3D: neural listeners for fine-grained 3D object identification in real-world scenes. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 422–440. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_25

    Chapter  Google Scholar 

  2. Bai, X., et al.: Transfusion: robust lidar-camera fusion for 3d object detection with transformers. In: CVPR, pp. 1090–1099 (2022)

    Google Scholar 

  3. Behley, J., et al.: Semantickitti: a dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307 (2019)

    Google Scholar 

  4. Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)

    Google Scholar 

  5. Cai, D., Zhao, L., Zhang, J., Sheng, L., Xu, D.: 3djcg: a unified framework for joint dense captioning and visual grounding on 3d point clouds. In: CVPR, pp. 16464–16473 (2022)

    Google Scholar 

  6. Chen, D.Z., Chang, A.X., Nießner, M.: ScanRefer: 3D object localization in RGB-D scans using natural language. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 202–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_13

    Chapter  Google Scholar 

  7. Chen, J., Luo, W., Wei, X., Ma, L., Zhang, W.: Ham: hierarchical attention model with high performance for 3d visual grounding. arXiv preprint arXiv:2210.12513 (2022)

  8. Chen, X., Zhang, T., Wang, Y., Wang, Y., Zhao, H.: Futr3d: a unified sensor fusion framework for 3d detection. arXiv preprint arXiv:2203.10642 (2022)

  9. Chen, Z., Hu, R., Chen, X., Nießner, M., Chang, A.X.: Unit3d: a unified transformer for 3d dense captioning and visual grounding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 18109–18119 (2023)

    Google Scholar 

  10. Cho, J., Lei, J., Tan, H., Bansal, M.: Unifying vision-and-language tasks via text generation. In: ICML, pp. 1931–1942. PMLR (2021)

    Google Scholar 

  11. Cong, P., et al.: Weakly supervised 3d multi-person pose estimation for large-scale scenes based on monocular camera and single lidar. arXiv preprint arXiv:2211.16951 (2022)

  12. Cong, P., et al.: Stcrowd: a multimodal dataset for pedestrian perception in crowded scenes. In: CVPR (2022)

    Google Scholar 

  13. De Vries, H., Strub, F., Chandar, S., Pietquin, O., Larochelle, H., Courville, A.: Guesswhat?! visual object discovery through multi-modal dialogue, pp. 5503–5512 (2017)

    Google Scholar 

  14. Deng, J., Yang, Z., Chen, T., Zhou, W., Li, H.: Transvg: end-to-end visual grounding with transformers. In: ICCV, pp. 1769–1779 (2021)

    Google Scholar 

  15. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  16. Feng, M., Li, Z., et al.: Free-form description guided 3d visual graph network for object grounding in point cloud. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3722–3731 (2021)

    Google Scholar 

  17. Han, X., Cong, P., Xu, L., Wang, J., Yu, J., Ma, Y.: Licamgait: gait recognition in the wild by using lidar and camera multi-modal visual sensors. arXiv preprint arXiv:2211.12371 (2022)

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  19. Hu, R., Rohrbach, M., et al.: Modeling relationships in referential expressions with compositional modular networks. In: CVPR, pp. 1115–1124 (2017)

    Google Scholar 

  20. Huang, J., Qin, Y., Qi, J., Sun, Q., Zhang, H.: Deconfounded visual grounding. arXiv preprint arXiv:2112.15324 (2021)

  21. Huang, S., Chen, Y., Jia, J., Wang, L.: Multi-view transformer for 3d visual grounding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15524–15533 (2022)

    Google Scholar 

  22. Jain, A., Gkanatsios, N., Mediratta, I., Fragkiadaki, K.: Bottom up top down detection transformers for language grounding in images and point clouds. CoRR arxiv:2112.08879 (2021)

  23. Kamath, A., Singh, M., et al: Mdetr-modulated detection for end-to-end multi-modal understanding. In: ICCV, pp. 1780–1790 (2021)

    Google Scholar 

  24. Kolmet, M., Zhou, Q., Ošep, A., Leal-Taixé, L.: Text2pos: text-to-point-cloud cross-modal localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6687–6696 (2022)

    Google Scholar 

  25. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123(1), 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  26. Li, Y., et al.: Deepfusion: lidar-camera deep fusion for multi-modal 3d object detection. In: CVPR, pp. 17182–17191 (2022)

    Google Scholar 

  27. Liang, T., et al.: Bevfusion: a simple and robust lidar-camera fusion framework. arXiv preprint arXiv:2205.13790 (2022)

  28. Liao, Y., et al.: A real-time cross-modality correlation filtering method for referring expression comprehension. In: CVPR, pp. 10880–10889 (2020)

    Google Scholar 

  29. Liu, H., Lin, A., Han, X., Yang, L., Yu, Y., Cui, S.: Refer-it-in-rgbd: a bottom-up approach for 3d visual grounding in rgbd images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6032–6041 (2021)

    Google Scholar 

  30. Liu, R., Liu, C., Bai, Y., Yuille, A.L.: Clevr-ref+: diagnosing visual reasoning with referring expressions. In: CVPR, pp. 4185–4194 (2019)

    Google Scholar 

  31. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  32. Lu, J., Batra, D., Parikh, D., Lee, S.: Vilbert: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf

  33. Luo, J., et al.: 3d-sps: single-stage 3d visual grounding via referred point progressive selection. In: CVPR, pp. 16454–16463 (2022)

    Google Scholar 

  34. Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation and comprehension of unambiguous object descriptions. In: CVPR, pp. 11–20 (2016)

    Google Scholar 

  35. Nagaraja, V.K., Morariu, V.I., Davis, L.S.: Modeling context between objects for referring expression understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 792–807. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_48

    Chapter  Google Scholar 

  36. Ott, M., et al.: fairseq: a fast, extensible toolkit for sequence modeling. In: Proceedings of NAACL-HLT 2019: Demonstrations (2019)

    Google Scholar 

  37. Qi, C.R., Chen, X., Litany, O., Guibas, L.J.: Imvotenet: boosting 3d object detection in point clouds with image votes. In: CVPR, pp. 4404–4413 (2020)

    Google Scholar 

  38. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object detection from rgb-d data. In: CVPR, pp. 918–927 (2018)

    Google Scholar 

  39. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  40. Rohrbach, A., Rohrbach, M., Tang, S., Joon Oh, S., Schiele, B.: Generating descriptions with grounded and co-referenced people. In: CVPR, pp. 4979–4989 (2017)

    Google Scholar 

  41. Sindagi, V.A., Zhou, Y., Tuzel, O.: Mvx-net: multimodal voxelnet for 3d object detection. In: ICRA, pp. 7276–7282. IEEE (2019)

    Google Scholar 

  42. Su, W., Zhu, X., etc.: Vl-bert: pre-training of generic visual-linguistic representations. arXiv preprint arXiv:1908.08530 (2019)

  43. Vaswani, A., et al.: Attention is all you need. ArXiv arxiv:1706.03762 (2017)

  44. Vora, S., Lang, e.: Pointpainting: sequential fusion for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4604–4612 (2020)

    Google Scholar 

  45. Wang, P., Wu, Q., Cao, J., Shen, C., Gao, L., Hengel, A.V.D.: Neighbourhood watch: referring expression comprehension via language-guided graph attention networks. In: CVPR, pp. 1960–1968 (2019)

    Google Scholar 

  46. Wu, Y., Cheng, X., Zhang, R., Cheng, Z., Zhang, J.: Eda: explicit text-decoupling and dense alignment for 3d visual grounding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19231–19242 (2023)

    Google Scholar 

  47. Xu, Y., et al.: Human-centric scene understanding for 3d large-scale scenarios. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 20349–20359 (2023)

    Google Scholar 

  48. Yan, X., et al.: 2dpass: 2d priors assisted semantic segmentation on lidar point clouds. In: ECCV 2022, pp. 677–695. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19815-1_39

  49. Yang, S., Li, G., Yu, Y.: Dynamic graph attention for referring expression comprehension. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4644–4653 (2019)

    Google Scholar 

  50. Yang, Z., Chen, T., Wang, L., Luo, J.: Improving one-stage visual grounding by recursive sub-query construction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_23

    Chapter  Google Scholar 

  51. Yang, Z., et al.: A fast and accurate one-stage approach to visual grounding. In: ICCV (2019)

    Google Scholar 

  52. Yu, L., et al.: Mattnet: modular attention network for referring expression comprehension. In: CVPR (2018)

    Google Scholar 

  53. Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 69–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_5

    Chapter  Google Scholar 

  54. Yuan, Z., Yan, X., et al.: Instancerefer: cooperative holistic understanding for visual grounding on point clouds through instance multi-level contextual referring. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1791–1800 (2021)

    Google Scholar 

  55. Zhang, Y., Gong, Z., Chang, A.X.: Multi3drefer: grounding text description to multiple 3d objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15225–15236 (2023)

    Google Scholar 

  56. Zhao, L., Cai, D., Sheng, L., Xu, D.: 3dvg-transformer: relation modeling for visual grounding on point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2928–2937 (2021)

    Google Scholar 

  57. Zhou, L., Kalantidis, Y., et al.: Grounded video description. In: CVPR, pp. 6578–6587 (2019)

    Google Scholar 

  58. Zhu, C., et al.: Seqtr: a simple yet universal network for visual grounding. arXiv preprint arXiv:2203.16265 (2022)

  59. Zhu, X., et al.: Cylindrical and asymmetrical 3d convolution networks for lidar-based perception. IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6807–6822 (2021)

    Article  Google Scholar 

  60. Zhu, Z., Ma, X., Chen, Y., Deng, Z., Huang, S., Li, Q.: 3d-vista: pre-trained transformer for 3d vision and text alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2911–2921 (2023)

    Google Scholar 

  61. Zhuang, Z., Li, R., Jia, K., Wang, Q., Li, Y., Tan, M.: Perception-aware multi-sensor fusion for 3d lidar semantic segmentation. In: ICCV, pp. 16280–16290 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuexin Ma .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 11592 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Z. et al. (2025). WildRefer: 3D Object Localization in Large-Scale Dynamic Scenes with Multi-modal Visual Data and Natural Language. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15104. Springer, Cham. https://doi.org/10.1007/978-3-031-72952-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72952-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72951-5

  • Online ISBN: 978-3-031-72952-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics