Skip to main content

CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Aiming to incrementally learn new classes with only few samples while preserving the knowledge of base (old) classes, few-shot class-incremental learning (FSCIL) faces several challenges, such as overfitting and catastrophic forgetting. Such a challenging problem is often tackled by fixing a feature extractor trained on base classes to reduce the adverse effects of overfitting and forgetting. Under such formulation, our primary focus is representation learning on base classes to tackle the unique challenge of FSCIL: simultaneously achieving the transferability and discriminability of the learned representation. Building upon the recent efforts for enhancing the transferability, such as promoting the spread of features, we find that trying to secure the spread of features within a more confined feature space enables the learned representation to strike a better balance between the transferability and discriminability. Thus, in stark contrast to prior beliefs that the inter-class distance should be maximized, we claim that the CLOSER different classes are, the better for FSCIL. The empirical results and analysis from the perspective of information bottleneck theory justify our simple yet seemingly counter-intuitive representation learning method, raising research questions and suggesting alternative research directions. The code is available here.

J. Oh and S. Baik—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/gtegner/mine-pytorch.

References

  1. Achituve, I., Navon, A., Yemini, Y., Chechik, G., Fetaya, E.: GP-tree: a gaussian process classifier for few-shot incremental learning. In: ICML (2021)

    Google Scholar 

  2. Akyürek, A.F., Akyürek, E., Wijaya, D.T., Andreas, J.: Subspace regularizers for few-shot class incremental learning. In: ICLR (2022)

    Google Scholar 

  3. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. In: ICLR (2017)

    Google Scholar 

  4. Belghazi, M.I., et al.: Mutual information neural estimation. In: PMLR (2018)

    Google Scholar 

  5. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: BMVC (2014)

    Google Scholar 

  6. Chen, K., Lee, C.G.: Incremental few-shot learning via vector quantization in deep embedded space. In: ICLR (2021)

    Google Scholar 

  7. Chen, M.F., et al.: Perfectly balanced: improving transfer and robustness of supervised contrastive learning. In: ICML (2022)

    Google Scholar 

  8. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  9. Cheraghian, A., Rahman, S., Fang, P., Roy, S.K., Petersson, L., Harandi, M.: Semantic-aware knowledge distillation for few-shot class-incremental learning. In: CVPR (2021)

    Google Scholar 

  10. Cheraghian, A., et al.: Synthesized feature based few-shot class-incremental learning on a mixture of subspaces. In: ICCV (2021)

    Google Scholar 

  11. Chi, Z., Gu, L., Liu, H., Wang, Y., Yu, Y., Tang, J.: Metafscil: a meta-learning approach for few-shot class incremental learning. In: CVPR (2022)

    Google Scholar 

  12. Cui, Q., et al.: Discriminability-transferability trade-off: an information-theoretic perspective. In: ECCV (2022)

    Google Scholar 

  13. Delange, M., et al.: A continual learning survey: defying forgetting in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 44(7), 3366–3385 (2021)

    Google Scholar 

  14. Deng, J., Guo, J., Yang, J., Xue, N., Kotsia, I., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: CVPR (2019)

    Google Scholar 

  15. Donahue, J., et al.: Decaf: a deep convolutional activation feature for generic visual recognition. In: ICML (2014)

    Google Scholar 

  16. Dong, S., Hong, X., Tao, X., Chang, X., Wei, X., Gong, Y.: Few-shot class-incremental learning via relation knowledge distillation. In: AAAI (2021)

    Google Scholar 

  17. Geirhos, R., et al.: Shortcut learning in deep neural networks. Nat. Mach. Intell. 2(11), 665–673 (2020)

    Article  Google Scholar 

  18. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  20. Hersche, M., Karunaratne, G., Cherubini, G., Benini, L., Sebastian, A., Rahimi, A.: Constrained few-shot class-incremental learning. In: CVPR (2022)

    Google Scholar 

  21. Islam, A., Chen, C.F., Panda, R., Karlinsky, L., Radke, R., Feris, R.: A broad study on the transferability of visual representations with contrastive learning. In: ICCV (2021)

    Google Scholar 

  22. Kalla, J., Biswas, S.: S3C: self-supervised stochastic classifiers for few-shot class-incremental learning. In: ECCV (2022)

    Google Scholar 

  23. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA (PNAS) 114(13), 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  24. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICMLW (2015)

    Google Scholar 

  25. Kornblith, S., Chen, T., Lee, H., Norouzi, M.: Why do better loss functions lead to less transferable features? In: NeurIPS (2021)

    Google Scholar 

  26. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. University of Toronto (2009)

    Google Scholar 

  27. Liu, B., et al.: Negative margin matters: Understanding margin in few-shot classification. In: ECCV (2020)

    Google Scholar 

  28. Liu, H., et al.: Few-shot class-incremental learning via entropy-regularized data-free replay. In: ECCV (2022)

    Google Scholar 

  29. Ngampruetikorn, V., Schwab, D.J.: Information bottleneck theory of high-dimensional regression: relevancy, efficiency and optimality. In: NeurIPS (2022)

    Google Scholar 

  30. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  31. Papyan, V., Han, X., Donoho, D.L.: Prevalence of neural collapse during the terminal phase of deep learning training. Proc. Natl. Acad. Sci. USA (PNAS) 117(40), 24652–24663 (2020)

    Article  MathSciNet  Google Scholar 

  32. Peng, C., Zhao, K., Wang, T., Li, M., Lovell, B.C.: Few-shot class-incremental learning from an open-set perspective. In: ECCV (2022)

    Google Scholar 

  33. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: CVPRW (2014)

    Google Scholar 

  34. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision (IJCV) 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  35. Shi, G., Chen, J., Zhang, W., Zhan, L.M., Wu, X.M.: Overcoming catastrophic forgetting in incremental few-shot learning by finding flat minima. In: NeurIPS (2021)

    Google Scholar 

  36. Shwartz-Ziv, R., Tishby, N.: Opening the black box of deep neural networks via information (2017)

    Google Scholar 

  37. Slonim, N., Tishby, N.: Agglomerative information bottleneck. In: NIPS (1999)

    Google Scholar 

  38. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NIPS (2017)

    Google Scholar 

  39. Song, Z., Zhao, Y., Shi, Y., Peng, P., Yuan, L., Tian, Y.: Learning with fantasy: semantic-aware virtual contrastive constraint for few-shot class-incremental learning. In: CVPR (2023)

    Google Scholar 

  40. Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., Gong, Y.: Few-shot class-incremental learning. In: CVPR (2020)

    Google Scholar 

  41. Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle. In: 2015 IEEE Information Theory Workshop (ITW), pp. 1–5 (2015). https://doi.org/10.1109/ITW.2015.7133169

  42. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: NIPS (2016)

    Google Scholar 

  43. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Technical report, Caltech (2011)

    Google Scholar 

  44. Wang, H., et al.: Cosface: large margin cosine loss for deep face recognition. In: CVPR (2018)

    Google Scholar 

  45. Xue, Y., Joshi, S., Gan, E., Chen, P.Y., Mirzasoleiman, B.: Which features are learnt by contrastive learning? On the role of simplicity bias in class collapse and feature suppression. In: ICML (2023)

    Google Scholar 

  46. Yang, Y., Yuan, H., Li, X., Lin, Z., Torr, P., Tao, D.: Neural collapse inspired feature-classifier alignment for few-shot class incremental learning. In: ICLR (2023)

    Google Scholar 

  47. Zhang, C., Song, N., Lin, G., Zheng, Y., Pan, P., Xu, Y.: Few-shot incremental learning with continually evolved classifiers. In: CVPR (2021)

    Google Scholar 

  48. Zhao, L., et al.: Few-shot class-incremental learning via class-aware bilateral distillation. In: CVPR (2023)

    Google Scholar 

  49. Zheng, Y., Pal, D.K., Savvides, M.: Ring loss: convex feature normalization for face recognition. In: CVPR (2018)

    Google Scholar 

  50. Zhou, D.W., Wang, F.Y., Ye, H.J., Ma, L., Pu, S., Zhan, D.C.: Forward compatible few-shot class-incremental learning. In: CVPR (2022)

    Google Scholar 

  51. Zhou, D.W., Ye, H.J., Ma, L., Xie, D., Pu, S., Zhan, D.C.: Few-shot class-incremental learning by sampling multi-phase tasks. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 45(11), 12816–12831 (2022)

    Google Scholar 

  52. Zhu, K., Cao, Y., Zhai, W., Cheng, J., Zha, Z.J.: Self-promoted prototype refinement for few-shot class-incremental learning. In: CVPR (2021)

    Google Scholar 

  53. Zhuang, H., Weng, Z., He, R., Lin, Z., Zeng, Z.: Gkeal: gaussian kernel embedded analytic learning for few-shot class incremental task. In: CVPR (2023)

    Google Scholar 

  54. Zou, Y., Zhang, S., Li, Y., Li, R.: Margin-based few-shot class-incremental learning with class-level overfitting mitigation. In: NeurIPS (2022)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the IITP grants [No. 2021-0-01343, Artificial Intelligence Graduate School Program (Seoul National University), No.2021-0-02068, and No.2023-0-00156], the NRF grant [No.2021M3A 9E4080782] funded by the Korean government (MSIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Mu Lee .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2424 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oh, J., Baik, S., Lee, K.M. (2025). CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15107. Springer, Cham. https://doi.org/10.1007/978-3-031-72967-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72967-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72966-9

  • Online ISBN: 978-3-031-72967-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics