Abstract
Aiming to incrementally learn new classes with only few samples while preserving the knowledge of base (old) classes, few-shot class-incremental learning (FSCIL) faces several challenges, such as overfitting and catastrophic forgetting. Such a challenging problem is often tackled by fixing a feature extractor trained on base classes to reduce the adverse effects of overfitting and forgetting. Under such formulation, our primary focus is representation learning on base classes to tackle the unique challenge of FSCIL: simultaneously achieving the transferability and discriminability of the learned representation. Building upon the recent efforts for enhancing the transferability, such as promoting the spread of features, we find that trying to secure the spread of features within a more confined feature space enables the learned representation to strike a better balance between the transferability and discriminability. Thus, in stark contrast to prior beliefs that the inter-class distance should be maximized, we claim that the CLOSER different classes are, the better for FSCIL. The empirical results and analysis from the perspective of information bottleneck theory justify our simple yet seemingly counter-intuitive representation learning method, raising research questions and suggesting alternative research directions. The code is available here.
J. Oh and S. Baik—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achituve, I., Navon, A., Yemini, Y., Chechik, G., Fetaya, E.: GP-tree: a gaussian process classifier for few-shot incremental learning. In: ICML (2021)
Akyürek, A.F., Akyürek, E., Wijaya, D.T., Andreas, J.: Subspace regularizers for few-shot class incremental learning. In: ICLR (2022)
Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. In: ICLR (2017)
Belghazi, M.I., et al.: Mutual information neural estimation. In: PMLR (2018)
Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: BMVC (2014)
Chen, K., Lee, C.G.: Incremental few-shot learning via vector quantization in deep embedded space. In: ICLR (2021)
Chen, M.F., et al.: Perfectly balanced: improving transfer and robustness of supervised contrastive learning. In: ICML (2022)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)
Cheraghian, A., Rahman, S., Fang, P., Roy, S.K., Petersson, L., Harandi, M.: Semantic-aware knowledge distillation for few-shot class-incremental learning. In: CVPR (2021)
Cheraghian, A., et al.: Synthesized feature based few-shot class-incremental learning on a mixture of subspaces. In: ICCV (2021)
Chi, Z., Gu, L., Liu, H., Wang, Y., Yu, Y., Tang, J.: Metafscil: a meta-learning approach for few-shot class incremental learning. In: CVPR (2022)
Cui, Q., et al.: Discriminability-transferability trade-off: an information-theoretic perspective. In: ECCV (2022)
Delange, M., et al.: A continual learning survey: defying forgetting in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 44(7), 3366–3385 (2021)
Deng, J., Guo, J., Yang, J., Xue, N., Kotsia, I., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: CVPR (2019)
Donahue, J., et al.: Decaf: a deep convolutional activation feature for generic visual recognition. In: ICML (2014)
Dong, S., Hong, X., Tao, X., Chang, X., Wei, X., Gong, Y.: Few-shot class-incremental learning via relation knowledge distillation. In: AAAI (2021)
Geirhos, R., et al.: Shortcut learning in deep neural networks. Nat. Mach. Intell. 2(11), 665–673 (2020)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Hersche, M., Karunaratne, G., Cherubini, G., Benini, L., Sebastian, A., Rahimi, A.: Constrained few-shot class-incremental learning. In: CVPR (2022)
Islam, A., Chen, C.F., Panda, R., Karlinsky, L., Radke, R., Feris, R.: A broad study on the transferability of visual representations with contrastive learning. In: ICCV (2021)
Kalla, J., Biswas, S.: S3C: self-supervised stochastic classifiers for few-shot class-incremental learning. In: ECCV (2022)
Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA (PNAS) 114(13), 3521–3526 (2017)
Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICMLW (2015)
Kornblith, S., Chen, T., Lee, H., Norouzi, M.: Why do better loss functions lead to less transferable features? In: NeurIPS (2021)
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. University of Toronto (2009)
Liu, B., et al.: Negative margin matters: Understanding margin in few-shot classification. In: ECCV (2020)
Liu, H., et al.: Few-shot class-incremental learning via entropy-regularized data-free replay. In: ECCV (2022)
Ngampruetikorn, V., Schwab, D.J.: Information bottleneck theory of high-dimensional regression: relevancy, efficiency and optimality. In: NeurIPS (2022)
van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Papyan, V., Han, X., Donoho, D.L.: Prevalence of neural collapse during the terminal phase of deep learning training. Proc. Natl. Acad. Sci. USA (PNAS) 117(40), 24652–24663 (2020)
Peng, C., Zhao, K., Wang, T., Li, M., Lovell, B.C.: Few-shot class-incremental learning from an open-set perspective. In: ECCV (2022)
Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: CVPRW (2014)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision (IJCV) 115, 211–252 (2015)
Shi, G., Chen, J., Zhang, W., Zhan, L.M., Wu, X.M.: Overcoming catastrophic forgetting in incremental few-shot learning by finding flat minima. In: NeurIPS (2021)
Shwartz-Ziv, R., Tishby, N.: Opening the black box of deep neural networks via information (2017)
Slonim, N., Tishby, N.: Agglomerative information bottleneck. In: NIPS (1999)
Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NIPS (2017)
Song, Z., Zhao, Y., Shi, Y., Peng, P., Yuan, L., Tian, Y.: Learning with fantasy: semantic-aware virtual contrastive constraint for few-shot class-incremental learning. In: CVPR (2023)
Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., Gong, Y.: Few-shot class-incremental learning. In: CVPR (2020)
Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle. In: 2015 IEEE Information Theory Workshop (ITW), pp. 1–5 (2015). https://doi.org/10.1109/ITW.2015.7133169
Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: NIPS (2016)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Technical report, Caltech (2011)
Wang, H., et al.: Cosface: large margin cosine loss for deep face recognition. In: CVPR (2018)
Xue, Y., Joshi, S., Gan, E., Chen, P.Y., Mirzasoleiman, B.: Which features are learnt by contrastive learning? On the role of simplicity bias in class collapse and feature suppression. In: ICML (2023)
Yang, Y., Yuan, H., Li, X., Lin, Z., Torr, P., Tao, D.: Neural collapse inspired feature-classifier alignment for few-shot class incremental learning. In: ICLR (2023)
Zhang, C., Song, N., Lin, G., Zheng, Y., Pan, P., Xu, Y.: Few-shot incremental learning with continually evolved classifiers. In: CVPR (2021)
Zhao, L., et al.: Few-shot class-incremental learning via class-aware bilateral distillation. In: CVPR (2023)
Zheng, Y., Pal, D.K., Savvides, M.: Ring loss: convex feature normalization for face recognition. In: CVPR (2018)
Zhou, D.W., Wang, F.Y., Ye, H.J., Ma, L., Pu, S., Zhan, D.C.: Forward compatible few-shot class-incremental learning. In: CVPR (2022)
Zhou, D.W., Ye, H.J., Ma, L., Xie, D., Pu, S., Zhan, D.C.: Few-shot class-incremental learning by sampling multi-phase tasks. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 45(11), 12816–12831 (2022)
Zhu, K., Cao, Y., Zhai, W., Cheng, J., Zha, Z.J.: Self-promoted prototype refinement for few-shot class-incremental learning. In: CVPR (2021)
Zhuang, H., Weng, Z., He, R., Lin, Z., Zeng, Z.: Gkeal: gaussian kernel embedded analytic learning for few-shot class incremental task. In: CVPR (2023)
Zou, Y., Zhang, S., Li, Y., Li, R.: Margin-based few-shot class-incremental learning with class-level overfitting mitigation. In: NeurIPS (2022)
Acknowledgments
This work was supported in part by the IITP grants [No. 2021-0-01343, Artificial Intelligence Graduate School Program (Seoul National University), No.2021-0-02068, and No.2023-0-00156], the NRF grant [No.2021M3A 9E4080782] funded by the Korean government (MSIT).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Oh, J., Baik, S., Lee, K.M. (2025). CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15107. Springer, Cham. https://doi.org/10.1007/978-3-031-72967-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-72967-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72966-9
Online ISBN: 978-3-031-72967-6
eBook Packages: Computer ScienceComputer Science (R0)