Skip to main content

Multi-Scale Cross Distillation for Object Detection in Aerial Images

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Object detection in aerial images is a longstanding yet challenging task. Despite the significant advancements in recent years, most works still show unsatisfactory performance due to the scale variation of objects. A standard strategy to address this problem is multi-scale training, aiming to learn scale-invariant feature representations. Albeit achieving inspiring improvements, such a multi-scale strategy is impractical for real application as inference time increases considerably. Besides, the original images are resized to different scales and subsequently trained separately, lacking information interaction across different scales. This paper presents a novel method called multi-scale cross distillation (MSCD) to address the issues mentioned above. MSCD combines the merits of multi-scale training and knowledge distillation, enabling single-scale inference to achieve comparable or superior performance than multi-scale inference. Specifically, we first construct a parallel multi-branch architecture, in which each branch shares the same parameters yet takes images with different scales as input. Furthermore, we design an adaptive cross-scale distillation module that adaptively integrates the knowledge of different branches into one. Thus, the detectors trained with MSCD only require single-scale inference. Extensive experiments demonstrate the effectiveness of MSCD. Without bells and whistles, MSCD can facilitate prevalent two-stage detectors to outperform corresponding single-scale models by \(\sim \)5 and \(\sim \)7 mAP improvement on DOTA and DIOR-R datasets, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is worth noting that the RPN only predicts foreground and background, which does not make predictions for all categories. Thus, for each prediction of RPN, \(y_i^{m, R}=[c_i^{m, R}, b_i^{m, R}]\in \mathbb {R}^{2+5}\).

  2. 2.

    In this paper, we use the gray font to indicate that variables do not participate in gradient back-propagation.

  3. 3.

    When conducting multi-scale training and testing, the original images are first resized to three scales, i.e., (0.5, 1.0, 1.5), which are then cropped to 1,024 \(\times \) 1,024 patches with a stride of 524.

References

  1. Ahn, S., Hu, S.X., Damianou, A., Lawrence, N.D., Dai, Z.: Variational information distillation for knowledge transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9155–9163 (2019). https://doi.org/10.1109/CVPR.2019.00938

  2. Blaschke, T.: Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote. Sens. 65(1), 2–16 (2010). https://doi.org/10.1016/j.isprsjprs.2009.06.004

    Article  Google Scholar 

  3. Blaschke, T., et al.: Geographic object-based image analysis - towards a new paradigm. ISPRS J. Photogramm. Remote. Sens. 87, 180–191 (2014). https://doi.org/10.1016/j.isprsjprs.2013.09.014

    Article  Google Scholar 

  4. Burochin, J.P., Vallet, B., Brédif, M., Mallet, C., Brosset, T., Paparoditis, N.: Detecting blind building façades from highly overlapping wide angle aerial imagery. ISPRS J. Photogramm. Remote. Sens. 96, 193–209 (2014). https://doi.org/10.1016/j.isprsjprs.2014.07.011

    Article  Google Scholar 

  5. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018). https://doi.org/10.1109/CVPR.2018.00644

  6. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  7. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018). https://doi.org/10.1109/TPAMI.2017.2699184

    Article  Google Scholar 

  8. Chen, R., Ai, H., Shang, C., Chen, L., Zhuang, Z.: Learning lightweight pedestrian detector with hierarchical knowledge distillation. In: Proceedings of the IEEE International Conference on Image Processing, pp. 1645–1649 (2019). https://doi.org/10.1109/ICIP.2019.8803079

  9. Cheng, G., et al.: Anchor-free oriented proposal generator for object detection. IEEE Trans. Geosci. Remote Sens. 60, 1–11 (2022). https://doi.org/10.1109/TGRS.2022.3183022

    Article  Google Scholar 

  10. Cheng, G., et al.: Dual-aligned oriented detector. IEEE Trans. Geosci. Remote Sens. 60, 1–11 (2022). https://doi.org/10.1109/TGRS.2022.3149780

    Article  Google Scholar 

  11. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995). https://doi.org/10.1023/A:1022627411411

    Article  Google Scholar 

  12. Dai, X., et al.: General instance distillation for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7838–7847 (2021). https://doi.org/10.1109/CVPR46437.2021.00775

  13. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893 (2005). https://doi.org/10.1109/CVPR.2005.177

  14. Ding, J., Xue, N., Long, Y., Xia, G.S., Lu, Q.: Learning ROI transformer for oriented object detection in aerial images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2844–2853 (2019). https://doi.org/10.1109/CVPR.2019.00296

  15. Ding, J., et al.: Object detection in aerial images: a large-scale benchmark and challenges. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 7778–7796 (2022). https://doi.org/10.1109/TPAMI.2021.3117983

    Article  Google Scholar 

  16. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6568–6577 (2019). https://doi.org/10.1109/ICCV.2019.00667

  17. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 524–531 (2005). https://doi.org/10.1109/CVPR.2005.16

  18. Guo, Q., et al.: Online knowledge distillation via collaborative learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11017–11026 (2020). https://doi.org/10.1109/CVPR42600.2020.01103

  19. Han, J., Ding, J., Li, J., Xia, G.S.: Align deep features for oriented object detection. IEEE Trans. Geosci. Remote Sens. 60, 1–11 (2022). https://doi.org/10.1109/TGRS.2021.3062048

    Article  Google Scholar 

  20. Han, J., Ding, J., Xue, N., Xia, G.S.: Redet: a rotation-equivariant detector for aerial object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2785–2794 (2021). https://doi.org/10.1109/CVPR46437.2021.00281

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  22. Hei, L., Jia, D.: Cornernet: detecting objects as paired keypoints. Int. J. Comput. Vision 128, 642–656 (2020). https://doi.org/10.1007/s11263-019-01204-1

    Article  Google Scholar 

  23. Heo, B., Kim, J., Yun, S., Park, H., Kwak, N., Choi, J.Y.: A comprehensive overhaul of feature distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1921–1930 (2019). https://doi.org/10.1109/ICCV.2019.00201

  24. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006). https://doi.org/10.1126/science.1127647

    Article  MathSciNet  Google Scholar 

  25. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv e-prints (2015)

    Google Scholar 

  26. Hou, Y., Ma, Z., Liu, C., Loy, C.C.: Learning lightweight lane detection CNNs by self attention distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1013–1021 (2019). https://doi.org/10.1109/ICCV.2019.00110

  27. Kim, K., Ji, B., Yoon, D., Hwang, S.: Self-knowledge distillation with progressive refinement of targets. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6547–6556 (2021). https://doi.org/10.1109/ICCV48922.2021.00650

  28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the International Conference on Neural Information Processing Systems, pp. 1097–1105. Curran Associates Inc, Red Hook (2012)

    Google Scholar 

  29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  30. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  31. Leitloff, J., Hinz, S., Stilla, U.: Vehicle detection in very high resolution satellite images of city areas. IEEE Trans. Geosci. Remote Sens. 48(7), 2795–2806 (2010). https://doi.org/10.1109/TGRS.2010.2043109

    Article  Google Scholar 

  32. Li, F., Zhang, H., Liu, S., Guo, J., Ni, L.M., Zhang, L.: DN-DETR: accelerate DETR training by introducing query denoising. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13609–13617 (2022). https://doi.org/10.1109/CVPR52688.2022.01325

  33. Li, Q., Jin, S., Yan, J.: Mimicking very efficient network for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7341–7349 (2017). https://doi.org/10.1109/CVPR.2017.776

  34. Li, Y., Chen, Y., Wang, N., Zhang, Z.X.: Scale-aware trident networks for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6053–6062 (2019). https://doi.org/10.1109/ICCV.2019.00615

  35. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 936–944 (2017). https://doi.org/10.1109/CVPR.2017.106

  36. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2020). https://doi.org/10.1109/TPAMI.2018.2858826

    Article  Google Scholar 

  37. Liu, S., et al.: DAB-DETR: dynamic anchor boxes are better queries for DETR. In: Proceedings of the International Conference on Learning Representations (2022)

    Google Scholar 

  38. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018). https://doi.org/10.1109/CVPR.2018.00913

  39. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  40. Liu, W., Zhang, T., Huang, S., Li, K.: A hybrid optimization framework for UAV reconnaissance mission planning. Comput. Ind. Eng. 173, 108653 (2022). https://doi.org/10.1016/j.cie.2022.108653

    Article  Google Scholar 

  41. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  42. Ma, J., et al.: Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimedia 20(11), 3111–3122 (2018). https://doi.org/10.1109/TMM.2018.2818020

    Article  Google Scholar 

  43. Ma, T., Tian, W., Xie, Y.: Multi-level knowledge distillation for low-resolution object detection and facial expression recognition. Knowl.-Based Syst. 240, 108136 (2022)

    Article  Google Scholar 

  44. Nguyen, C.H., Nguyen, T.C., Tang, T.N., Phan, N.L.H.: Improving object detection by label assignment distillation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1322–1331 (2022). https://doi.org/10.1109/WACV51458.2022.00139

  45. Osco, L.P., et al.: A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery. ISPRS J. Photogram. Remote Sens. 174, 1–17 (2021). https://doi.org/10.1016/j.isprsjprs.2021.01.024

  46. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3962–3971 (2019). https://doi.org/10.1109/CVPR.2019.00409

  47. Qi, L., et al.: Multi-scale aligned distillation for low-resolution detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14438–14448 (2021). https://doi.org/10.1109/CVPR46437.2021.01421

  48. Qian, W., Yang, X., Peng, S., Yan, J., Guo, Y.: Learning modulated loss for rotated object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2458–2466 (2021). https://doi.org/10.1609/aaai.v35i3.16347

  49. Qian, W., Yang, X., Peng, S., Zhang, X., Yan, J.: RSDet++: point-based modulated loss for more accurate rotated object detection. IEEE Trans. Circuits Syst. Video Technol. 32(11), 7869–7879 (2022). https://doi.org/10.1109/TCSVT.2022.3186070

    Article  Google Scholar 

  50. Qiao, S., Chen, L.C., Yuille, A.: Detectors: detecting objects with recursive feature pyramid and switchable atrous convolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10208–10219 (2021). https://doi.org/10.1109/CVPR46437.2021.01008

  51. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  52. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6517–6525 (2017). https://doi.org/10.1109/CVPR.2017.690

  53. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  54. Salvoldi, M., Cohen-Zada, A.L., Karnieli, A.: Using the venus super-spectral camera for detecting moving vehicles. ISPRS J. Photogramm. Remote. Sens. 192, 33–48 (2022). https://doi.org/10.1016/j.isprsjprs.2022.08.005

    Article  Google Scholar 

  55. Singh, B., Davis, L.S.: An analysis of scale invariance in object detection - snip. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3578–3587 (2018). https://doi.org/10.1109/CVPR.2018.00377

  56. Singh, B., Najibi, M., Davis, L.S.: Sniper: Efficient multi-scale training. In: Proceedings of the Advances in Neural Information Processing Systems, vol. 31 (2018). https://proceedings.neurips.cc/paper/2018/file/166cee72e93a992007a89b39eb29628b-Paper.pdf

  57. Wang, T., Yuan, L., Zhang, X., Feng, J.: Distilling object detectors with fine-grained feature imitation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4928–4937 (2019). https://doi.org/10.1109/CVPR.2019.00507

  58. Xia, G.S., et al.: DOTA: a large-scale dataset for object detection in aerial images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3974–3983 (2018). https://doi.org/10.1109/CVPR.2018.00418

  59. Xie, X., Cheng, G., Wang, J., Yao, X., Han, J.: Oriented R-CNN for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3500–3509 (2021). https://doi.org/10.1109/ICCV48922.2021.00350

  60. Xu, G., Liu, Z., Li, X., Loy, C.C.: Knowledge distillation meets self-supervision. In: Proceedings of the European Conference on Computer Vision, pp. 588–604 (2020)

    Google Scholar 

  61. Xu, Y., et al.: Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Trans. Pattern Anal. Mach. Intell. 43(4), 1452–1459 (2021). https://doi.org/10.1109/TPAMI.2020.2974745

    Article  Google Scholar 

  62. Yang, X., Yan, J., Feng, Z., He, T.: R3DET: refined single-stage detector with feature refinement for rotating object. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3163–3171 (2021). https://doi.org/10.1609/aaai.v35i4.16426

  63. Yang, X., Hou, L., Zhou, Y., Wang, W., Yan, J.: Dense label encoding for boundary discontinuity free rotation detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15814–15824 (2021). https://doi.org/10.1109/CVPR46437.2021.01556

  64. Yang, X., Yan, J.: Arbitrary-oriented object detection with circular smooth label. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 677–694. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_40

    Chapter  Google Scholar 

  65. Yang, X., Yan, J., Ming, Q., Wang, W., Zhang, X., Tian, Q.: Rethinking rotated object detection with gaussian Wasserstein distance loss. In: Proceedings of the 38th International Conference on Machine Learning, vol. 139, pp. 11830–11841 (2021). https://proceedings.mlr.press/v139/yang21l.html

  66. Yang, X., et al.: Learning high-precision bounding box for rotated object detection via kullback-leibler divergence. In: Proceedings of the Advances in Neural Information Processing Systems, vol. 34, pp. 18381–18394 (2021). https://proceedings.neurips.cc/paper/2021/file/98f13708210194c475687be6106a3b84-Paper.pdf

  67. Yang, X., et al.: The KFIoU Loss for Rotated Object Detection. arXiv e-prints arXiv:2201.12558 (2022)

  68. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: point set representation for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9656–9665 (2019). https://doi.org/10.1109/ICCV.2019.00975

  69. Yang, Z., et al.: Focal and global knowledge distillation for detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4633–4642 (2022). https://doi.org/10.1109/CVPR52688.2022.00460

  70. Yu, Y., Da, F.: Phase-shifting coder: predicting accurate orientation in oriented object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13354–13363 (2023). https://doi.org/10.1109/CVPR52729.2023.01283

  71. Zhang, H., et al.: DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection. arXiv e-prints (2022). https://doi.org/10.48550/arXiv.2203.03605

  72. Zhang, L., Ma, K.: Structured knowledge distillation for accurate and efficient object detection. IEEE Trans. Pattern Anal. Mach. Intell. 45(12), 15706–15724 (2023). https://doi.org/10.1109/TPAMI.2023.3300470

    Article  Google Scholar 

  73. Zhang, T., et al.: Balance learning for ship detection from synthetic aperture radar remote sensing imagery. ISPRS J. Photogramm. Remote. Sens. 182, 190–207 (2021). https://doi.org/10.1016/j.isprsjprs.2021.10.010

    Article  Google Scholar 

  74. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4320–4328 (2018). https://doi.org/10.1109/CVPR.2018.00454

  75. Zhao, F., Xia, L., Kylling, A., Li, R., Shang, H., Xu, M.: Detection flying aircraft from landsat 8 oli data. ISPRS J. Photogramm. Remote. Sens. 141, 176–184 (2018). https://doi.org/10.1016/j.isprsjprs.2018.05.001

    Article  Google Scholar 

  76. Zheng, Z., et al.: Localization distillation for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 45(8), 10070–10083 (2023). https://doi.org/10.1109/TPAMI.2023.3248583

    Article  Google Scholar 

  77. Zhou, Y., et al.: Mmrotate: a rotated object detection benchmark using pytorch. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 7331–7334 (2022). https://doi.org/10.1145/3503161.3548541

  78. Zhu, J., et al.: Complementary relation contrastive distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9256–9265 (2021). https://doi.org/10.1109/CVPR46437.2021.00914

  79. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: Proceedings of the International Conference on Learning Representations (2021)

    Google Scholar 

  80. Zhu, Y., et al.: Scalekd: distilling scale-aware knowledge in small object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19723–19733 (2023). https://doi.org/10.1109/CVPR52729.2023.01889

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 12302252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8109 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, K., Wang, Z., Li, Z., Teng, X., Li, Y. (2025). Multi-Scale Cross Distillation for Object Detection in Aerial Images. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15107. Springer, Cham. https://doi.org/10.1007/978-3-031-72967-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72967-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72966-9

  • Online ISBN: 978-3-031-72967-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics