Skip to main content

Sparse Beats Dense: Rethinking Supervision in Radar-Camera Depth Completion

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15107))

Included in the following conference series:

  • 248 Accesses

Abstract

It is widely believed that sparse supervision is worse than dense supervision in the field of depth completion, but the underlying reasons for this are rarely discussed. To this end, we revisit the task of radar-camera depth completion and present a new method with sparse LiDAR supervision to outperform previous dense LiDAR supervision methods in both accuracy and speed. Specifically, when trained by sparse LiDAR supervision, depth completion models usually output depth maps containing significant stripe-like artifacts. We find that such a phenomenon is caused by the implicitly learned positional distribution pattern from sparse LiDAR supervision, termed as LiDAR Distribution Leakage (LDL) in this paper. Based on such understanding, we present a novel Disruption-Compensation radar-camera depth completion framework to address this issue. The Disruption part aims to deliberately disrupt the learning of LiDAR distribution from sparse supervision, while the Compensation part aims to leverage 3D spatial and 2D semantic information to compensate for the information loss of previous disruptions. Extensive experimental results demonstrate that by reducing the impact of LDL, our framework with sparse supervision outperforms the state-of-the-art dense supervision methods with 11.6\(\mathbf {\%}\) improvement in Mean Absolute Error (MAE) and \(\mathbf {1.6 \times }\) speedup in Frame Per Second (FPS). The code is available at https://github.com/megvii-research/Sparse-Beats-Dense.

H. Li and M. Jing—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    These object-level mask annotations will be released as well, along with the code.

References

  1. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: CVPR, pp. 11621–11631 (2020)

    Google Scholar 

  2. Chabra, R., et al.: Deep local shapes: learning local SDF priors for detailed 3D reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 608–625. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_36

    Chapter  Google Scholar 

  3. Chen, X., Zhang, T., Wang, Y., Wang, Y., Zhao, H.: FUTR3D: a unified sensor fusion framework for 3D detection. In: CVPR, pp. 172–181 (2023)

    Google Scholar 

  4. Chen, Z., et al.: Vision transformer adapter for dense predictions. arXiv preprint arXiv:2205.08534 (2022)

  5. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: CVPR, pp. 5939–5948 (2019)

    Google Scholar 

  6. Cheng, X., Wang, P., Yang, R.: Depth estimation via affinity learned with convolutional spatial propagation network. In: ECCV, pp. 103–119 (2018)

    Google Scholar 

  7. Gasperini, S., Koch, P., Dallabetta, V., Navab, N., Busam, B., Tombari, F.: R4DYN: exploring radar for self-supervised monocular depth estimation of dynamic scenes. In: 3DV, pp. 751–760. IEEE (2021)

    Google Scholar 

  8. Girshick, R.: Fast R-CNN. In: ICCV, pp. 1440–1448 (2015)

    Google Scholar 

  9. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  10. Hu, M., Wang, S., Li, B., Ning, S., Fan, L., Gong, X.: Penet: towards precise and efficient image guided depth completion. In: ICRA, pp. 13656–13662. IEEE (2021)

    Google Scholar 

  11. Hu, X., Mu, H., Zhang, X., Wang, Z., Tan, T., Sun, J.: Meta-SR: a magnification-arbitrary network for super-resolution. In: CVPR, pp. 1575–1584 (2019)

    Google Scholar 

  12. Huang, Y., Zheng, W., Zhang, Y., Zhou, J., Lu, J.: Tri-perspective view for vision-based 3D semantic occupancy prediction. In: CVPR, pp. 9223–9232 (2023)

    Google Scholar 

  13. Imran, S., Liu, X., Morris, D.: Depth completion with twin surface extrapolation at occlusion boundaries. In: CVPR, pp. 2583–2592 (2021)

    Google Scholar 

  14. Kim, A., Ošep, A., Leal-Taixé, L.: Eagermot: 3D multi-object tracking via sensor fusion. In: ICRA, pp. 11315–11321. IEEE (2021)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  16. Lin, J.T., Dai, D., Van Gool, L.: Depth estimation from monocular images and sparse radar data. In: IROS, pp. 10233–10240. IEEE (2020)

    Google Scholar 

  17. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)

    Google Scholar 

  18. Lin, Y., Cheng, T., Zhong, Q., Zhou, W., Yang, H.: Dynamic spatial propagation network for depth completion. In: AAAI, vol. 36, pp. 1638–1646 (2022)

    Google Scholar 

  19. Liu, Y., Wang, T., Zhang, X., Sun, J.: PETR: position embedding transformation for multi-view 3D object detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13687, pp. 531–548. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_31

    Chapter  Google Scholar 

  20. Lo, C.C., Vandewalle, P.: Depth estimation from monocular images and sparse radar using deep ordinal regression network. In: ICIP, pp. 3343–3347. IEEE (2021)

    Google Scholar 

  21. Long, Y., Morris, D., Liu, X., Castro, M., Chakravarty, P., Narayanan, P.: Radar-camera pixel depth association for depth completion. In: CVPR, pp. 12507–12516 (2021)

    Google Scholar 

  22. Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: ICRA, pp. 4796–4803. IEEE (2018)

    Google Scholar 

  23. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR, pp. 4460–4470 (2019)

    Google Scholar 

  24. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  25. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation. In: CVPR, pp. 165–174 (2019)

    Google Scholar 

  26. Philion, J., Fidler, S.: Lift, splat, shoot: encoding images from arbitrary camera rigs by implicitly unprojecting to 3D. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 194–210. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_12

    Chapter  Google Scholar 

  27. Qiu, J., et al.: Deeplidar: deep surface normal guided depth prediction for outdoor scene from sparse lidar data and single color image. In: CVPR, pp. 3313–3322 (2019)

    Google Scholar 

  28. Qureshi, A.H., Simeonov, A., Bency, M.J., Yip, M.C.: Motion planning networks. In: ICRA, pp. 2118–2124. IEEE (2019)

    Google Scholar 

  29. Rho, K., Ha, J., Kim, Y.: Guideformer: transformers for image guided depth completion. In: CVPR, pp. 6250–6259 (2022)

    Google Scholar 

  30. Singh, A.D., et al.: Depth estimation from camera image and mmwave radar point cloud. In: CVPR, pp. 9275–9285 (2023)

    Google Scholar 

  31. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. NIPS 33, 7462–7473 (2020)

    Google Scholar 

  32. Skolnik, M.I.: Introduction to Radar Systems. New York (1980)

    Google Scholar 

  33. Wang, T.H., Wang, F.E., Lin, J.T., Tsai, Y.H., Chiu, W.C., Sun, M.: Plug-and-play: improve depth estimation via sparse data propagation. arXiv preprint arXiv:1812.08350 (2018)

  34. Weinstein, L.: Electromagnetic waves. Radio i svyaz’, Moscow (1988)

    Google Scholar 

  35. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 1492–1500 (2017)

    Google Scholar 

  36. Yan, Z., Wang, K., Li, X., Zhang, Z., Li, J., Yang, J.: RigNet: repetitive image guided network for depth completion. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13687, pp. 214–230. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_13

    Chapter  Google Scholar 

  37. Zhang, Y., Guo, X., Poggi, M., Zhu, Z., Huang, G., Mattoccia, S.: Completionformer: depth completion with convolutions and vision transformers. In: CVPR, pp. 18527–18536 (2023)

    Google Scholar 

  38. Zhou, B., et al.: Semantic understanding of scenes through the ade20k dataset. Int. J. Comput. Vis. 127, 302–321 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renhe Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H. et al. (2025). Sparse Beats Dense: Rethinking Supervision in Radar-Camera Depth Completion. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15107. Springer, Cham. https://doi.org/10.1007/978-3-031-72967-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72967-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72966-9

  • Online ISBN: 978-3-031-72967-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics